4% o[!
2 LJ Qhwa

> r'JO
Ln
- Jl:)J‘[1

;;Hﬂ"ﬁf—l‘;ai ‘
\Lpuutuk&Ll dE

aatriangh

i mimummm ' "’f -
Rt «mm i it T

L0000

.
LR L)

[l!ﬂ'

hlrd -‘ ,..'- "
L“\\l | 0 {I ;

tersasanma:

S3Z96£d1
SUYELW3 D

RN R RS

UtHiH

LT
R T

~ JP13 lmwmm
E 2f~

1 ‘b\--JJoﬁr .

[M
ll\'f!'f'!’ Lty

£
3

Advanced Digital Design

ADSITACT. ... e 4
INEFOAUCTION ...t e e e e e e e e e eeaeaes 4
Development enVIrONMENT.........oouuiiiiiii e 5
DeVvelOpMENT PrOCESSoeieeeeeeiiieeeee et e e e e e e e e e e e e e e e eeeaeannnnas 5
(070]1 0] 0101 aT=T 0] €< FUU PSR 6
OVEIAIL VIBW ...ttt e annnnnnes 7
1070 18] o (1 SR PSPPSR 7
FS232 TECV .. .ieitteee e et e e et e e e e e et ee e e e e e e e et e e e e e e e ata e e e e e eessaaeeeeeeessaeeeeeeeraans 7
rs232_recv_shift_ register ..., 7

(Y2 Y2 1 11811 o[S 8
.o TR L] o101 PSSO 8
e I PUL .. e e e e e ————— 8

7= o o T o {1 8
(VA Y 1= o T F PP 9
rs232_send_shift_register ..., 9
rS232_SeNd_DYLe ..o 9
MEM S O .t 9
[ed_SIMPle _diSPIAYccuvuieieeieee e 9
[[=To J= LYo T o 1157 o] - Y2 9

1Y - U PPPPRPPPPIN 9
1Yo = T 7o] 1 e N PR 9

VA CONTIOIN L.t 9

] TSSO 10
1770 = T = 1 0 ST 10
vga_Shift_register ... 10

1 =T =10 TS UPPPPR 10
DASIC _CElIl ... 10
[arge_Cell ... 10

FAM SWAP ..uuneeiiiitiieeeeeeeetteeeeeeeeat e eeeeeeasaa e eeeseessaaeeeseassaaaeaesessannaeeseessnnnaaaeeees 1"
MEM_CONTFOIIET e e e e e e e e e e e aaeees 11
1= OO PPP 11
Problems encountered during development ... 11
Testing the SYSteM ... e 12
POSSIble IMProvemMENTS........coiiiiecee e e e e eeaeeees 12
L@] a1 111 o] o USRI 12
REFEIENCES. ...coeieeiieeeee e e e e e e e e e e e e as 12
VHDL SOUIMCE COUEeneeeeeee et e 13
7=] o] o I o1 1 A/ o To PP 13
DASIC_CEILLVNA ... e 14
(o701 0101 (=1 PV o o [PPSO UPPPPPPR 14
IMG_INPULVIRA ... e 15
[arge _CellLVNAee e 16
led_ascCii_disSplay.VId............. e 16
led_simple_display.Vhd ... 18
157 PV T U 18
HFE.VINA .. ——————————— 19
[ife INPULVIA ..o e 25
7= =T 0 0 AV o o SRR 26

Advanced Digital Design

MeM_CONIrONEr. VA ... 30
MEM _ESIEIVNAo i 33
FAM_SWaAP. VR ... 35
rs232_MUIIPIEX. VA .o 35
VA VA (= ToaV A o T ST PPPR 37
rs232_recv_shift_register.vhd ... 39
(Y22 Y2 <=1 T 1A o o SO 39
rs232_send _byte.Vhdoiiiiiiii 41
rs232_send_shift_register.vhd ..., 42
VOA.VNA e 43
Vga_CoNtrolN. VA e 44
170 = T 7o] 1 e NV AV o o [P 45
1Yo T= T =10 01V Lo PO PPPPPPRR 46
vga_shift_register.Vhd ... 49

Page 3

Advanced Digital Design

Abstract

This report describes our work as part of the project oriented course “Advanced
Digital Design” taught at EPFL. We designed a VGA controller and three
demonstration applications. The first application is very simple and displays a
“snow” effect based on random pixels (something resembling what a TV set
displays when there is no signal). The second application allows us to display a
simple color image on the screen. The third application runs the famous game of
life. We also designed a unit for bi-directional communication with a PC using the
serial port.

The goal of this course was to provide us with an overview of what the
challenges are when developing a large hardware project.

We synthesized our project for an Altera VHDL (FPGA) board and connected a
normal computer monitor to show our results.

Introduction

The graphics card is the hardware that allows a computer to display images on a
screen. The screen is represented in memory as a large set of pixels. Each pixel
has a red, green and blue component. The graphics card is responsible to
transmit these pixels through analog signals. VGA is a standard used to transmit
this data to the screen. It was marketed by IBM in 1987. The VGA specifications
are a screen size of 640 by 480 pixels and the colors are encoded as 0V — 0.7V
(actually the specification is much more complex, describes palette modes, etc.).
Although the VGA standard is very low resolution, it is the common denominator
of all graphics card.

For detailed information on the VGA controller, please refer to the course’s handout (VGA.pdf).

The famous game of life is a cellular automaton (invented in 1970 by John
Conway). It is a topic broadly studies in computer sciences and mathematics. We
will only give a vague explanation on how the game works, without going into the
details. The game of life is “played” on a rectangle board, where each cell can be
either alive (set to 1) or dead (set to 0). Every cycle, each cell changes it’s state
depending on it's current value and the state of it's 8 neighboring cells. The rules
of the game state that if a cell is alive and has more than 3 neighbors or less than
2 neighbors then it will die, otherwise it will survive. If the cell is dead and has 3
neighbors, then it will take birth. The fun part in the game of life is to find initial
patterns that do interesting things. Once the initial pattern is loaded, the user
doesn’t interact with the world (he just looks at the evolution of his pattern).

For more detailed information on the game of life, refer to the course’s handout (GameOfLife.pdf).

In order to create the initial pattern, we wrote a Java user interface that
communicates with the FPGA through the serial port (RS232).

See UART.pdf.

Page 4

Advanced Digital Design

Development environment

We used the hardware description language VHDL to program all the hardware
components. We used ModelSim to compile and simulate our code. We then
used Leonardo to synthesize the code and Quartus to perform the routing and
FPGA programming. We suggest using Teraterm as the terminal emulator to
communicate with the card, as we had some problems with Hyperterm.

The development board used was Altera’s Excalibur series. The board contains
the EP20K200EFC484-2X FPGA, which has 200.000 gates and 106.496 bits of
memory.

For debugging purpose we used the 7 segment leds on the card and various
types of switches and buttons.

The card also has a RAM of 64K x 32 bits. This RAM is used to store the image
or game of life state. Most modern graphics controllers have simultaneous read/
write RAMs. Unfortunately, it wasn’t the case for us, so we had to make sure to
never read and write at the same time. The calculation of the life states therefore
needs to be interlaced with the screen rendering.

Development process

The project was divided into 4 assignments. Since we didn’t need to hand in
each assignment, we weren’t forced to follow the course’s guidelines. Here is
how we worked:

At first we wrote the RS232 controller. We thought that it would be a wise idea to
implement bi-directional communication, since it didn’t involve a lot of extra work.
It turns out, this saved us a lot of debugging time later on. We then wrote the
VGA related code. The VGA controller is actually much simpler than the word
sounds (people are always impressed when you tell them you made a graphics
card from scratch). To test the VGA controller we created an image renderer. This
involved creating a memory controller to store and read from the RAM. Each
pixel of the image is stored as 4 bits, the first bit is ignored, the next bits
represent the red, green and blue components. This means we can only display
up to 8 colors. This limitation is due to the amount of RAM we have, and also due
to the digital-analog converter that we have (a simple diode) that generates either
0V or 0.7V based on the digital input signal (that is either OV or 5V).

We then implemented the game of life. Our game of life is 640 by 480 cells (each
cells corresponds to one pixel on the screen) and the top-bottom, right-left are
wrapped. This involved extending the memory controller. The life pattern is saved
as 1 bit per cell value, but the pattern is saved twice in memory, because it's
much easier to calculate the next generation of cells without erasing the current
generation’s values (since the game is wrapped) and then swapping memory
regions. Our game of life runs at the screen refresh rate (60 Hz).

When transferring data to the board, the first byte specifies if we want to display
an image (first byte = 0x02), in which case we must transfer 153601 bytes, or the
game of life (first byte = 0x01) in which case we must transfer must send 38401

Page 5

Advanced Digital Design
bytes. This is handled by a multiplex we added to the rs232 code.

One of our design goals (which wasn'’t stated in the hand out) was to design the
system in such a way that we can retransmit a new life pattern or a new image at
any time. We have achieved this at the cost of some extra complexity and time
investment.

We finally implemented a hardware pseudo-random number generator just for
the fun of doing it. We used a technique known as linear feedback shift register
(Ifsr). We won’t go into the mathematical details (which involve galois fields and
Fibonacci numbers) of this random generator. We used this random number
generator to display the “snow” effect while transferring data to the board.

Note: It was said during our lectures that it is impossible to go beyond 640x480
cells or 60Hz. We would like to point out here that this is not impossible. We
could have created a larger grid and used buttons to scroll the display. We could
have also calculated more generations per screen refresh (which would mean we
would be running faster than 60Hz, but not displaying every generation). A third
interesting option would have been to link two cards together and have the game
run on two screens (with gliders going from one screen to the other). If time had
permitted us, we would have probably tried this crazy idea.

Components

Our project is based on several independent components. See figure on
following page for an overall view. We will present the components from the
simplest to the most complex (hence the more interesting components are
presented last). The most important components are the following:

* life.vhd — This component is the top most and ties everything together.

* basic_cell.vhd — Calculates the future state of a cell given the cell and it's
8 neighbors.

* vga.vhd — Generates the VGA signals.

* app_ctrl.vhd — Controls which application is currently running and
generates a signal (sync_counter) which is used to synchronize the VGA
with the game of life.

* mem_controller.vhd — This part controls the RAM. It allows, in a very

flexible manner, for every component to safely perform a read or a write
access.

Page 6

Advanced Digital Design

Overall view

life
app_ctrl
I
life_input
rs232 _recv || rs232_multiplex «E
img_input L
rs232 send — rs232_send byte | —| mem_tester
mem_controller
vga vga_ram
mem_swap | |
life_ram
Counter

This is a very fundamental component. For simplicity we designed one counter
that we reused throughout the project (10 bits counter). We could have designed
individual counters (or used the generic type in VHDL) to save bits, but we
consider the advantage of ease of development to be worth the extra few bits.
The counter’s value is saved in a register and is presented to the outside world
(signal value). Every clock cycle, if the inc input signal is set, then the counter
value is incremented until it matches data. When the counter reaches data, it
raises the timeout signal and reset’s itself.

Note: the data (target value) isn’t saved in a register.
rs232_recv

rs232_recv_shift_register

Shift registers are another fundamental components in our system. We
have different shift registers, since we needed different types each time.
The rs232_recv_shift_register takes a single bit as input and generates 8
output bits. The shift happens only when the shift signal is set.

Page 7

Advanced Digital Design

Note: We didn’t provide any reset option, since we don’t need it (we know
that we will always be reading the dataout signal after 8 bits have been
pumped in).

The rs232_recv component is used to read data from the serial port. Like many
other more complex components, it is based on a state machine. It uses two
counters, one to keep track of the 115200 bauds rate and one to remember how
many bits of data have been read.

The rs232_recv component raises the rs232 recv_ack signal when it has
received 8 bits of data. For an understanding of how the state machine works,
refer to UART.pdf.

rs232_multiplex

This component is very basic, it allows for the multiplexing of the game of life with
the image renderer. It is connected to rs232_recv. It starts out in the idle state,
and looks at the first byte (a byte = 8 bits) that the rs232_recv gets. If the byte is
0x01, then it will set itself into life mode. If the byte is 0x02, then it will set itself
into img mode. Otherwise it will stay in idle mode. Remember we stated one of
our design goals was to be able to reload images and life patterns. In order for
that to happen, the rs232_multiplex must know when the last byte of data has
arrived. This happens by receiving a done signal from the life_input or img_input
components. Again this component is very generic and could be extended to
multiplex with other applications.

img_input

life_input

The objective of these components is to receive the data from rs232_multiplex to
which they are connected, and to save the data at the right place in memory. The
actual memory access is performed in mem_controller (see below). So all these
components do is generate the memory address and raise a signal
(img_input_done and life_input_done) when the data has finished arriving. The
RAM is accessed by 32 bits at a time (we can read or write 32 bits at a time). So
here is how we laid out the memory:

* For the images, the 9 bits of the row are concatenated to the 7 bits of the
col. The last 3 bits of the col are used to select one pixel (remember a
pixel is stored as 4 bits) among 8 in the 32 bits.

* For the game of life, the top most bit controls which part in ram we want to
access (remember we are swapping between two regions). The second bit
is always 0. The next 9 bits are the row and the following 5 bits come from
the col (higher 5 bits). 5 col bits (lower 5 bits) are used to select a cell
among the 32 bits.

app_ctrl

This component tells the other components (through the mode signal) which
application is running and generates a signal used to synchronize the VGA with
the game of life. The state is defined as two bits, “00” means we are transferring

Page 8

Advanced Digital Design

data on the rs232 (and the VGA must thus display the “snow” effect), “01” means
we are in the game of life mode and “11” means we are displaying an image.

The synchronization signal is a counter from 0 to 31 in the case of the game of
life and a counter from 0 to 8 in the case of the image display mode.

This component uses the rs232_recv_ack signal to know when the application
goes back to waiting for rs232 data to finish transferring.

rs232_send

rs232_send_shift_register

This component performs the reverse operation of the
rs232_recv_shift_register. It takes as input 8 bits and shifts 1 bit out
whenever the shift signal is set.

The rs232_send component is very similar to the rs232_recv component. It uses
counters and rs232_send_shift_register to output data to the serial port.

rs232_send_byte

This component is a helper component that will take a byte and send it using the
rs232_send component. It will then notify (by raising byte _send_done) that the
data has gone.

mem_tester

This is another helper component, it will use rs232_send_byte to dump part of
the memory on the serial port.

led_simple_display
A very simple component to display data on the leds.

led_ascii_display
A similar component, but takes as input the ascii value of a digit and displays the
corresponding digit on the 7 segment leds (it maps a digit to the right bit pattern).

vga
vga_controlv

vga_controlh

These components generate the hsync and vsync signals, as described in
the specification (refer to VGA.pdf). The vga_controlh also generates
signals to tell when to increment the vga_controlv.

This component puts vga_controlh and vga_controlv together. It also generates
the col and row values that are used by vga ram to load and display the right
pixels at the right time.

Page 9

Advanced Digital Design

Ifsr

This component generates a pseudo-random sequence of bits. It's used by
vga_ram to display random pixels on the screen.

vga_ram

vga_shift_register

This component is used to postpone the hsync and vsync signals by 32 or
8 clock cycles. We must do this in order to have enough time to load data
from the RAM before sending both, the pixels and sync signals to the
monitor.

This is among the most complex components in our system. Basically it loads
data from the RAM (either 8 pixels or 32 cells) based on the current row and col
values into a register. The register is then used to display these pixels on the
screen, but in such a way that we send the pixel either exactly 8 or 32 clock
cycles. By doing this we make sure that the pixels correspond to the sync
signals, but also we make sure that the register get overridden exactly when the
last pixel has been displayed.

This component is responsible for sending black pixels when the VGA is in either
horizontal sync or vertical sync.

When in life mode, the vga_ram will load the data from the ram at the cycle 30
and 31. This means all the other cycles can be freely used by life_ram to read
and store data.

life_ram

basic_cell
Performs the basic game of life computation.

Note: the future state isn’t saved in a register, nor is the current state. The
registers are actually in the life_ram component. This component is
therefore purely combinatory.

large_cell

This component allows us to compute 32 life cells at the same time. Since
the RAM is read/written 32 bits at a time, we found it to be a good design
decision to calculate the life cells in chunks of 32 bits.

This is the second complex component in our system. It basically performs 9 load
requests (each load takes 1 cycle) and then waits one cycle (so that basic_cell is
done it's calculation) and then writes back the data (writing data takes 3 cycles).
Since each load and write also takes an extra cycle due to the structure of
mem_controller, that means we calculate 32 cells in 23 clock ticks. Since VGA
uses clock cycles 30 and 31, we don’t do anything with the remaining 7 clock
cycles. If you calculate the amount of time needed to calculate an entire
generation of life, you will find a value much smaller than the amount of time
Page 10

Advanced Digital Design

needed to update the entire screen; so this implies we have a lot of extra cycles
that we can “waste” wherever it is convenient.
The computation starts over again after a memory swap has happened.

ram_swap

This component controls when the ram can be swapped. The rules are the
following: the mode must be life, the screen must be in the vertical sync state and
the computation of the life is idle.

mem_controller

This is the third complex component in our system. The RAM access is controller
here. The mem_controller is connected to the following 5 components: life_input
(for writing), img_input (for writing), life_ram (for reading and writing), vga_ram
(for reading) and mem_tester (for reading).

The mem_controller checks who wants to access the RAM and grants it based
on the following priority rule (from greatest priority to lowest):

img_input > life_input > life_ram_load > mem_tester > life_ram_save > vga_ram

This priority is only for debugging purpose. There is actually never any conflict
since the ram and life are synchronized by app_ctrl. However the mem_controller
generates an ack signal to the component it has granted access. This means we
can change our memory access policy and we could tell vga_ram and life_ram to
try accessing the ram until they are granted to do so. This implies the vga_ram
would become even more complicated because we would have to manage the
case when the component isn’t granted access and must therefore maintain a
cache.

life
This is the top most component. All it does is tie all the other components
together.

Problems encountered during development

The first problem which we had was related to the rs232 rx signal. We had
learned in other courses that signals coming from the outside should go through
a series of cascading D flip-flops. This should be done to avoid setting the
system in a meta-stable state. At first we thought that we wouldn’t need these
flip-flops because we know the rate at which the rx signal varies. This is indeed
true, but we don’t know when the first rx change will occur, and this can set our
entire rs232 circuit into a meta-stable state. We therefore added two levels of flip-
flops. There is no rule as to how many levels to have, probabilistic laws say that
the more levels you add, the less likely you are to have a meta-stable state (the
risk of having a meta stable state is never 0!).

The second problem we had was related to the buttons on the board generating
multiple transitions (due to the mechanical design of the buttons). We solved this
problem by required alternating between two buttons (this is relevant only to our
debugging process).

Page 11

Advanced Digital Design

The third problem we had was related to the VHDL language. It turns out the
tools we had wouldn’t raise a warning if we wrote something like:
if (signal <= some_value) then

This simple mistake took us some time to find, and once we realized our tools
were too liberal regarding the language, we wrote a perl script to find such
mistakes. It would be great if the VHDL related tools could detect common
programming mistakes.

Testing the system

In order to test the system, you must load the life.sof file using Quartus and then
launch our Java GUI:
java -Xms256m -Xmx256m -classpath "comm.jar;jiu.jar;." GUI

As you can see we used the comm API (Sun) for transferring data over the serial
port and JIU (Java Imaging Utility) to manipulate images (different methods for
reducing number of colors, image resizing).

Note: As of the writing of this document, the java code wasn't fully functional.

Possible improvements

There are many things we could have improved, had we had enough time:
* Better documentation of the code we wrote.
More technical details in this document.
Written a generic counter to save bits.
Written a generic shift register to save in number of files.
Implement the full rs232 protocol (with handshaking, ack and parity
checking).

Conclusion

To end this report, all we can say is we had a lot of fun doing hardware
development. We were able to meet the requirements very quickly, and we were
also able to extend our project without too much trouble. What is very amazing is
that we were able to work as a team of two students without any problems.
Usually hardware development is more difficult in teams, probably because one
small mistake can break everything, but this wasn’t at all the case in our team.

References

We used the lecture slides and notes, mainly the following files :
UART.pdf

VGA.pdf

DescriptionRam.pdf

SimulationAfter.pdf

ManuelOutilsFPGA.pdf

CarteAltera.pdf

GameOfLife.pdf

Page 12

Advanced Digital Design

VHDL Source Code
app_ctrl.vhd

-- app_ctrl.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;

entity app_ctrl is
port (
clk, reset: in std logic;
rs232_recv_ack: in std logic;
recv mode.
life input_done,
system in life mode.

00 this signal will set

img_input done: in std logic; 01 this

11 this
system in img mode.
mode: out std logic vector (1l downto 0);
sync_counter: out std logic_vector (9 downto 0));
vga with life.
end app_ctrl;

this counter

architecture synth app ctrl of app ctrl is
component counter is
port(clk: in std logic;
reset: in std logic;
inc: in std logic;
data: in std logic vector (9 downto 0);
timeout: out std logic;
value: out std logic vector (9 downto 0));
end component;
signal current state, next state: std logic vector(l downto 0);
signal counter data: std logic_vector (9 downto 0);
signal ctrl reset, counter timeout: std logic;

begin
process (current state)
begin
if (current state = "11") then
counter_data <= conv_std_logic_vector (7, 10);
else
counter data <= conv_std logic vector (31, 10);
end if;
end process;
counter unit: counter port map (clk => clk, reset => ctrl reset,

counter data,

the system in rs232
signal will set the

signal will set the

is used to sync the

inc => '1l', data =>

timeout => counter timeout, value => sync counter);

mode <= current state;
process reset)
begin

if

(clk,

(reset '1l') then
current state <= "00";
elsif (clk'event and clk='1l")
current_state <= next_ state;

end if;

then

end process;

process (current state,
begin

ctrl reset <= reset;

if (rs232 recv_ack
next state <= "00";
elsif (life input done
ctrl reset <= '1';

next state <= "01";

elsif (img_input_done
ctrl reset <= '1'";

reset, rs232 recv_ack, life input done,

'l'") then

'l'") then

'l') then

img input done)

Page 13

Advanced Digital Design

next state <= "11";
else
next state <= current state;
end if;
end process;

end synth app ctrl;

basic_cell.vhd

-- basic cell.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

entity basic cell is
port(nw, n, ne, e, se, s, sw, w, m: in std logic;
next state: out std logic);
end basic cell;

architecture synth basic cell of basic cell is

signal templ : std logic_vector(l downto 0);

signal temp2 : std logic vector (1l downto 0);

signal temp3 : std logic_vector(l downto 0);
(

signal temp4 : std logic vector (2 downto 0);
signal sum : std logic vector (3 downto 0);

begin
templ <= ('0' & nw) + ('0'" & n) + ('0' & ne);
temp2 <= ('0' & e) + ('0' & se) + ('0' & s);
temp3 <= ('0' & sw) + ('0' & w);
tempd <= ('0' & templ) + ('0' & temp2);
sum <= ("00" & temp3) + ('0' & tempd);
process (m, sum)
begin
next state <= '0';
if (sum="0011") then
next state <= '1'";
m=1)
elsif(m="'1"'" and sum="0010") then
next state <= 'l1'; -- 2 neighbours means birth
end 1if;

end process;
end synth basic_cell;

counter.vhd

-- counter.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This unit is a "generic" (it's not that generic,
-- because it always uses 10 bits) counter. It

-- counts from 0 to data. When it reaches data, it
-- raises the timeout signal and resets itself on
-- the next clk rise.

-- The counter only counts when the inc input signal
-- 1is set.

-- Note: the data is not kept in a register (there is
-= no load signal), so it must always be set by
-= the unit using the counter.

-- Value 1is the counter's current value.
library ieee;

use ieee.std logic_1164.all;

use ieee.std logic arith.all;

use ieee.std logic unsigned.all;

entity counter is

-- 3 neighbours means birth or survival (m=0 or

(iff m=1)

Page 14

Advanced Digital Design

port (clk: in std logic;
reset: in std _logic;
inc: in std logic;
data: in std logic_vector (9 downto 0);
timeout: out std logic;
value: out std logic_vector (9 downto 0));
end counter;

architecture synth counter of counter is
signal reg: std logic vector (9 downto 0);

begin
process (reset, clk)
begin
if (reset='1l') then
reg<=(others => '0'");
timeout <= '0';
elsif (clk'event and clk='1l"') then
if (inc='1l') then
if (reg = data) then
timeout <= '1"';
else
timeout <= '0';
end if;
if (reg = data) then
reg<=(others => '0");
else
reg <= reg + conv_std logic_vector(l, 9);
end if;
else
timeout <= '0';
end if;
end if;

end process;

value <= reg;
end synth counter;

img_input.vhd

- life_input.vhd

-- Coded by Alok Menghrajani & Peter Amrhyn

-- Three counters are used, to keep track of the col/row and

-- when to write.

-— row (0-479) => 9 bits ANANANANN

-- col (0-1024) => 7 most significant bits

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

entity img input is
port (clk: in std logic;
reset: in std logic;
-- rs232
img _recv_ack: in std logic;

img recv _data: in std logic vector (7 downto 0);

—— mem

img input write req:

img_input write ack:

img input addr: out

img_input data: out

img input done: out
end img_input;

out std logic;

in std logic;

std logic vector (15 downto 0);
std logic vector (31 downto 0);
std logic);

architecture synth img input of img input is

component counter is

port (clk: in std logic;
reset: in std logic;
inc: in std logic;

Page 15

Advanced Digital Design

data: in std logic_vector (9 downto 0);

timeout: out std logic;

value: out std logic vector (9 downto 0));
end component;

signal byte timeout, col_ timeout, row_timeout: std logic;

signal byte value, col value, row_value, byte data, col data, row_data

std logic vector (9 downto 0);

component rs232 input shift register is
port (clk: in std logic;
datain: in std logic_vector (7 downto 0);
shift: in std logic;
dataout: out std _logic_vector (31 downto 0));
end component;

begin
byte data <= conv_std logic_vector (3, 10)
col data <= conv_std logic vector (79, 10)
row_data <= conv_std logic_vector (479, 10

’

)i

byte counter: counter port map (clk => clk, reset => reset, inc => img recv_ack, data

byte data,
timeout => byte timeout, value => byte value);

col counter: counter port map (clk => clk, reset => reset, inc => byte timeout, data

col data,
timeout => col timeout, value => col value);

row_counter: counter port map (clk => clk, reset => reset, inc => col timeout, data

row data,
timeout => row_timeout, value => row value);

=>

=>

=>

shift reg: rs232 input shift register port map (clk => clk, datain => img recv data,

shift => img recv_ack, dataout => img input data);

img_input addr <= row value(8 downto 0) & col value(6 downto 0);
img input done <= row_timeout;
img_input write req <= byte timeout;

end synth img input;

large_cell.vhd

-- large_cell.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

entity large cell is
port(n, m, s: in std logic vector (33 downto 0);
newgen: out std logic vector (31 downto 0));
end large cell;

architecture synth large_cell of large cell is
component basic cell is
port(nw, n, ne, e, se, s, sw, w, m : in std logic;
next state : out std logic);
end component;
begin
Life32: for i in 1 to 32 generate
life32 map: basic_cell port map(m => m(i), nw => n(i-1),
n => n(i), ne => n(i+l), e => m(i+l), se =>

sw => s(i-1), w => m(i-1), next state
newgen (i-1));
end generate Life32;
end synth large cell;

led_ascii_display.vhd

-- led ascii display.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

Page 16

s (1

=>

Advanced Digital Design

-- This unit is for debugging purpose. It
-- allows us to display ascii decoded digits.

-- Valid values are currently O

-9

(ascii 57=0x39).

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

s0

s2 .s7

entity led ascii display is

port(data: in std logic vector (6 downto 0);

(ascii 48=0x30)

leds: out std logic_vector (6 downto 0));
end led ascii display;

to

architecture synth led ascii display of led ascii display is

begin

process (data)
begin

case data is

when "0000000" => -- clr
leds (0) <= '1'; leds(1l) <=
leds (4) <= '1'; leds(b) <=
when "0110000" => -- 0

1Y
1

leds (0) <= '0';

leds (3) <= '0"';

leds (1) <= '1";

leds (4) <= '0"';

leds (2) <= '0';

when "0110001" => -- 1

leds (0) <= '1";

leds (3) <= "'1";

leds (1) <= '1";

leds(4) <= '1';

leds (2) <= '1";

when "0110010" => -- 2

leds (0) <= '0';

leds (3) <= '1";

leds (1) <= '0';

leds (4) <= '0"';

leds (2) <= '0';

when "0110011" => -- 3

leds (0) <= '0';

leds (3) <= '1";

leds (1) <= '0';

leds (4) <= '1"';

leds (2) <= '0';

when "0110100" => —-- 4

leds (0) <= '1";

leds (3) <= '0"';

leds (1) <= '0';

leds (4) <= '1"';

leds (2) <= '1";

when "0110101" => -- 5

leds (0) <= '0';

leds (3) <= '0"';

leds (1) <= '0';

leds (4) <= '1"';

leds (2) <= '0';

when "0110110" => -- 6

leds (0) <= '0";

leds (3) <= '0"';

leds (1) <= '0';

leds (4) <= '0"';

leds (2) <= '0';

when "0110111" => -- 7

leds (2)
leds (6)

leds (5)

leds (6)

leds (5)

leds (6)

leds (5)

leds (6)

leds (5)

leds (6)

leds (5)

leds (6)

leds (5)

leds (6)

<=
<=

1Y
1

leds (3)

<=

1t

Page 17

Advanced Digital Design

leds (0) <= '0';

leds (3) <= '1"; leds (5) <= '0"';
leds (1) <= '1"';
leds (4) <= '1"; leds (6) <= '0"';
leds (2) <= '1";
when "0111000" => -- 8
leds (0) <= '0"';
leds (3) <= '0"'; leds (5) <= '0"';
leds (1) <= '0"';
leds (4) <= '0"'; leds (6) <= '0"';
leds (2) <= '0"';
when "0111001" => -- 9
leds (0) <= '0"';
leds (3) <= '0"'; leds (5) <= '0"';
leds (1) <= '0"';
leds (4) <= '1"; leds (6) <= '0"';
leds (2) <= '0"';
when others => -- err
leds (0) <= '0"';
leds (3) <= '0"'; leds (5) <= "'1";
leds (1) <= '0';
leds (4) <= '0"'; leds (6) <= "'1";

leds (2) <= '0';

end case;
end process;
end synth led ascii display;

led_simple_display.vhd

led simple display.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This unit is for debugging purpose. It
-- allows us to display 7 bits on the
-- 7 segment leds

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

-= s0

-= s2 .s7

entity led simple display is
port(data: in std logic vector (6 downto 0);
leds: out std logic vector (6 downto 0));
end led simple display;

architecture synth led simple display of led simple display is
begin

leds <= data;
end synth led simple display;

Ifsr.vhd

lfsr.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- Hardware pseudo-random number generator
-- based on the linear feedback shift register technique.

-— This implementation is based on 8 bits and provides
-- a random bit pattern of length 255. The tab used is
--0,1,2,7

library ieee;

Page 18

Advanced Digital Design

use ieee.std logic 1164.all;
use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity lfsr is
port (
clk, reset: in std logic;
rand: out std logic);
end lfsr;

architecture synth 1fsr of 1lfsr is
signal reg: std logic vector (31 downto 0);
signal f: std logic;

begin
process (clk, reset)
begin
if (reset='1l') then

reg <= (0 => '1', others => '0");
elsif (clk'event and clk='1l') then
reg <= f & reg (31l downto 1);
end if;
end process;
rand <= reg(0);
f <= reg(0) xor reg(3);
end synth 1fsr;

life.vhd

life.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This is the top most unit of our system.
-- Right now it runs a game of life with the

-- input (game setup) uploaded through the serial port

-- and the display on a 640x480 vga screen.

-- We might support image uploading too.

-- Refer to signals.txt for the mapping of signals

-- from the altera card to the vhdl code.

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity life is
port(clk: in std logic;
nreset: in std logic;
rx: in std logic;
tx: out std logic;
buttons: in std logic_vector (3 downto 0);

switches: in std_logic_vector (7 downto 0);

ledl: out std logic vector (7 downto 0);
led2: out std logic vector (7 downto 0);

ram data: inout std logic_vector (31 downto 0);
ram addr: out std logic vector (15 downto 0);

ram we: out std logic;
ram oe: out std logic;
ram0_cs: out std logic;
raml_cs: out std _logic;
ram0_ble: out std logic;
raml_ble: out std_logic;
ram0_bhe: out std logic;
raml_bhe: out std_logic;
r, g, b: out std logic;
hsync out, vsync out: out std logic);
end life;

architecture synth life of life is
component led ascii display is
port(data: in std logic vector (6 downto 0);

leds: out std logic vector (6 downto 0));

end component;

Page 19

Advanced Digital Design

component led simple display is
port(data: in std logic vector (6 downto 0);
leds: out std logic_vector (6 downto 0));
end component;
component rs232 recv is
port(clk: in std logic;
reset: in std logic;
rx: in std logic;
rs232 _recv_ack: out std logic;
rs232 _recv_data: out std logic_vector (7 downto 0));
end component;
component rs232 send is
port (clk: in std logic;
reset: in std logic;
tx: out std logic;
rs232_send done: out std logic;
rs232_send data: in std logic vector (7 downto 0);
rs232_sending: in std logic);
end component;
component img input is
port (clk: in std logic;
reset: in std logic;
img recv_ack: in std logic;
img _recv_data: in std logic_vector (7 downto 0);
img input write req: out std logic;
img_input write ack: in std logic;
img input addr: out std logic vector (15 downto 0);
img_input data: out std logic vector (31 downto 0);
img input done: out std logic);
end component;
component life input is
port(clk: in std logic;
reset: in std logic;
life recv_ack: in std logic;
life recv data: in std logic_vector (7 downto 0);
life input write req: out std logic;
life input write ack: in std logic;
life input_addr: out std logic_vector (15 downto 0);
life input data: out std logic vector (31 downto 0);
life input done: out std _logic);
end component;
component mem controller is
port (clk: in std logic;
reset: in std _logic;
ram data: inout std logic_vector (31 downto 0);
ram_addr: out std logic vector (15 downto 0);
ram cs: out std logic;
ram we: out std logic;
ram swap: in std logic;
-- life input (WRITE)
life input write req: in std logic;
life input write ack: out std logic;
life input addr: in std logic vector (15 downto 0);
life input data: in std logic vector (31 downto 0);
-- img input (WRITE)
img_input write req: in std logic;
img input write ack: out std logic;
img_input addr: in std logic vector (15 downto 0);
img input data: in std logic_vector (31 downto 0);
-- mem_tester (READ)
mem tester read req: in std logic;
mem tester read ack: out std logic;
mem tester addr: in std logic vector (15 downto 0);
mem tester data: out std logic vector (31 downto 0);
-- life ram load (READ)
life ram load read req: in std logic;
life ram load read ack: out std logic;
life ram load addr: in std logic_vector (15 downto 0);
life ram load data: out std logic vector (31 downto 0);
-- life ram save (WRITE)
life ram save write req: in std logic;
life ram save write_ack: out std logic;
life ram save addr: in std logic vector (15 downto 0);
life ram save data: in std logic_vector (31 downto 0);
-- vga_ram (READ)
vga_ram_read without mem swap: in std logic;

Page 20

Advanced Digital Design

vga_ram read req: in std logic;
vga_ram_read ack: out std logic;
vga_ram addr: in std logic vector (15 downto 0);
vga_ram _data: out std logic_vector (31 downto 0);
but2, but3: in std logic);
end component;
component mem tester is
port(clk: in std logic;
reset: in std logic;
debug start: in std logic; -- when this signal is set to 1, the mem_ tester
will start dumping the memory.
mem tester read req: out std logic;
mem tester read ack: in std logic;
mem tester addr: out std logic vector (15 downto 0);
mem tester data: in std logic vector (31 downto 0);
byte send done: in std logic;
byte send data: out std logic vector (7 downto 0);
byte sending: out std logic);
end component;
component rs232 send byte is
port (clk: in std logic;
reset: in std logic;
byte send data: in std logic vector (7 downto 0);
byte sending: in std logic;
byte send done: out std logic;
rs232_send done: in std logic;
rs232_send data: out std logic vector (7 downto 0);
rs232_sending: out std logic);
end component;
component life ram is
port (clk: in std logic;
reset: in std logic;
start: in std logic; -- enable/disable the life calculation -- restart
calculation (send from vga_ ram
--after the swap has happened)
mode: in std _logic_vector(l downto 0);
sync_counter: in std logic vector (9 downto 0);
life ram done: out std logic; -- tell the system that the memory can be swapped.
life ram load read req: out std logic;
life ram load read _ack: in std logic;
life ram load data: in std logic vector (31 downto 0);
life ram load addr: out std logic_vector (15 downto 0);
life ram save write req: out std logic;
life ram save write ack: in std logic;
life ram save data: out std logic vector (31 downto 0);
life ram save_addr: out std logic vector (15 downto 0));
end component;
component vga is
port (
clk, reset: in std logic;
hsync, vsync: out std logic;

is _hsync, is vsync, is_sync: out std logic;
valuel, value2: out std logic vector (9 downto 0));

end component;

component vga_ram is

port (

clk, reset: in std logic;
hsync_in, vsync in: in std logic;
issync_in: in std logic;
col, row: in std logic_vector (9 downto 0);
hsync _out, vsync out: out std logic;
r, g, b: out std logic;
vga_ram_read req: out std logic;
vga_ram read ack: in std logic;
vga_ram_addr: out std logic_vector (15 downto 0);
vga_ram data: in std logic vector (31 downto 0);
vga_ram_read without mem swap: out std logic;
mode: in std logic vector (1l downto 0);
sync_counter: in std logic vector (9 downto 0));

end component;

component ram swap is

port (

clk, reset: in std logic;
is _vsync: in std logic;
life ram done: in std logic;

Page 21

Advanced Digital Design

mode: in std logic vector (1l downto 0);
but4: in std logic;
ram swap: out std logic);

end component;

component app ctrl is

port (
clk, reset: in std logic;
rs232_recv_ack: in std logic; -— 00 this signal will set the system in rs232
recv mode.
life input done, img input done: in std logic; -- 01 this signal will set the

system in life mode.
mode: out std logic_vector(l downto 0);
sync_counter: out std logic vector (9 downto 0)); -- this counter is used to sync
the vga with life.
end component;
component rs232 multiplex
port (
clk, reset: in std logic;
rs232_recv_ack: in std logic;
rs232 _recv_data: in std logic_vector (7 downto 0);
life recv_ack: out std logic;
life recv_data: out std logic_vector (7 downto 0);
life done: in std logic;
img _recv_ack: out std logic;
img recv_data: out std logic vector (7 downto 0);
img done: in std logic);
end component;

signal reset: std logic;
signal life input done, img input done: std logic;
signal life ram done: std logic;

signal butl, but2, but3, but4: std logic;

-- rs232 multiplex
signal life recv_ack, img recv_ack: std logic;
signal life recv data, img recv data: std logic vector (7 downto 0);

-- vga
signal hsync, vsync, 1is_hsync, is_vsync, 1is_sync, swap: std logic;
signal valuel, value2: std logic vector (9 downto 0);

-- rs232

signal rxl, rx2 : std logic;

signal rs232 recv data, rs232 send data, byte send data: std logic_vector (7 downto 0);
signal rs232 recv_ack: std_logic;

signal byte send done, byte sending, rs232 send done, rs232 sending: std logic;

-- mem_controller
signal ram cs, ram writeenable: std logic;
signal mem tester read req, mem tester read ack, 1life input write req,
life input write ack: std logic;
signal img input write req, img input write ack: std logic;
signal 1life ram load read req, life ram load read ack, life ram save write_ req,
life ram save write ack: std logic;
signal vga_ram read req, vga ram read_ack: std logic;
signal mem tester addr, 1life input addr, 1life ram load addr, 1life ram save addr:
std logic vector (15 downto 0);
signal img input addr: std logic vector (15 downto 0);
signal mem tester data, 1life input data, life ram load data, life ram save data:
std logic vector (31 downto 0);

signal img input data: std logic vector (31 downto 0);
signal vga_ram addr: std_logic_vector (15 downto 0);
signal vga ram data: std logic vector (31 downto 0);
signal vga_ram read without mem swap: std logic;

signal sync_counter: std logic_vector (9 downto 0);
signal mode: std logic_vector (1l downto 0);

begin
-- Solve the problem with the button being active at 1
reset <= not (nreset);

butl <= not (buttons(0));
but2 <= not (buttons(1l));
but3 <= not (buttons(2));

Page 22

Advanced Digital Design

but4 <= not (buttons(3));

-- Solve the problem of rx being an external signal
process (clk, reset)
begin
if (reset = '1l') then
rxl <= '1"';
rx2 <= '1"';
elsif (clk'event and clk='1l') then
rxl <= rx;
rx2 <= rxl;
end if;
end process;

-- rs232 multiplex
rs232 mutliplex unit: rs232 multiplex port map (clk => clk, reset => reset,
rs232 _recv_ack => rs232 recv_ack,
rs232 recv_data => rs232 recv_data,
life recv_ack => life recv_ack,
life recv _data => life recv data, life done => life input done,
img recv_ack => img recv_ack,
img _recv_data => img recv_data, img done => img input done);

-- app_ctrl
app_ctrl unit: app ctrl port map (clk => clk, reset => reset, rs232 recv_ack =>
rs232_recv_ack,
life input done => life input done, img input done =>
img_input done,
mode => mode, sync_counter => sync_counter);

-- ram_swap
ram_swap unit: ram swap port map (clk => clk, reset => reset, is vsync => is vsync,
life ram done => life ram done,
mode => mode, ram_swap => swap, butd => butd);

-- rs232 recv
rs232 _recv_unit: rs232 recv port map (clk => clk, reset => reset,
rx => rx2, rs232 recv_ack => rs232 recv_ack,
rs232 recv_data => rs232 recv_data);
-- rs232_send
rs232_send unit: rs232 send port map (clk => clk, reset => reset,
tx => tx, rs232 send done => rs232 send done,
rs232_send data => rs232 send data, rs232 sending
=> rs232_ sending);
-- img input
img_input unit : img_input port map (clk => clk, reset => reset, img recv_ack =>
img recv_ack, img recv data => img recv data,
img_input write req => img_ input write req,
img input write ack => img input write ack,
img_input addr => img_input addr, img input data
=> img input data,
img_input done => img input done) ;
-- life input
life input unit : life input port map (clk => clk, reset => reset, life recv _ack =>
life recv_ack, life recv _data => life recv data,
life input write req => life input write req,
life input write ack => life input write ack,
life input_addr => life input addr,
life input data => life input data,
life input done => life input done);
-- mem_controller
mem controller unit: mem controller port map (clk => clk, reset => reset, ram data =>
ram data, ram addr => ram addr,
ram cs => ram Cs, ram we =>
ram writeenable, ram swap => swap,
img_input write req =>
img input write req, img input write ack => img input write ack,
img_input addr => img input addr,
img input data => img input data,
life input write req =>
life input write req, life input write ack => life input write ack,
life input_addr => life input addr,
life input data => life input data,
mem_tester read req =>
mem tester read req, mem tester read ack => mem tester read ack,

Page 23

Advanced Digital Design

mem tester addr => mem tester addr,
mem_tester data => mem tester data,
life ram load read req =>
life ram load read req, life ram load read ack => life ram load read ack,
life ram load addr => life ram load addr,
life ram load data => life ram load data,
life ram save write req =>
life ram save write req, life ram save write ack => life ram save write_ ack,
life ram save addr => life ram save addr,
life ram save data => life ram save data,
vga_ram read reqg => vga ram read req,
vga_ram_read ack => vga_ram read_ack,
vga_ram_addr => vga ram addr,
vga_ram data => vga_ram data,
vga_ram read without mem swap =>
vga_ram_read without mem swap,
but2 => but2, but3 => but3);

ram0_cs <= not(ram cs); -- active at 0 !

raml_cs <= not(ram cs);

ram we <= not(ram writeenable);

ram _oe <= ram writeenable when ram cs='l' else 'l'; -- oe 1is selected when cs='1l"' and
we are not writing.

ram0_ble <= not (ram cs);

ram0_bhe <= not (ram cs);

raml_ble <= not(ram cs)

raml bhe <= not (ram cs)

’

’

-- game of life
life ram unit: 1life ram port map (clk => clk, reset => reset, mode => mode,
sync_counter => sync counter,
start => swap,
life ram done => life ram done,
life ram load read req => life ram load read req,
life ram load read ack => life ram load read ack,
life ram load data => life ram load data,
life ram load addr => life ram load addr,
life ram save write req => life ram save write req,
life ram save write ack => life ram save write ack,
life ram save data => life ram save data,
life ram save addr => life ram save addr);

-- vga

vga_unit: vga port map (clk => clk, reset => reset, hsync => hsync, vsync => vsync,
is_hsync => is hsync, is _vsync => is vsync, is sync => is sync,
valuel => valuel, value2 => value2);

vga_ram _unit: vga ram port map (clk => clk, reset => reset, hsync in => hsync, vsync_in
=> vsync, issync in => is sync,
col => valuel, row => value2, hsync_out => hsync out,
vsync_out => vsync out, r => r,
g => g, b => Db, vga_ram read req => vga_ram read_req,
vga_ram read ack => vga ram read ack,
vga_ram_addr => vga_ram_addr, vga_ram data =>
vga_ram data, vga ram read without mem swap =>
vga_ram_read without mem swap, mode => mode,
sync_counter => sync counter);

-- mem tester
mem tester unit: mem tester port map (clk => clk, reset => reset, debug start => butl,
mem tester read req => mem tester read regq,
mem_ tester read ack => mem tester read ack,
mem tester addr => mem tester addr,
mem_tester data => mem tester data,
byte sending => byte sending, byte send data =>
byte send data, byte send done => byte send done);

rs232_send_byte unit: rs232 send byte port map (clk => clk, reset => reset,
byte send data => byte send data, byte sending => byte sending,
byte send done => byte send done,
rs232_send done => rs232 send done,
rs232 _send data => rs232 send data,
rs232_sending => rs232 sending);

-- led one
led one: led ascii display port map(data => "0001001", leds => ledl (6 downto 0));

Page 24

Advanced Digital Design

ledl (7) <= butl;

-- led two
led two: led ascii display port map(data => "0000110", leds => led2(6 downto 0));
led2(7) <= but2;

end synth life;

life_input.vhd

life input.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This unit is used to write 32 bits representing
-- 32 pixels from the rs232 into the RAM. life done
-- 1s raised once 640*%480 (after 9600 writes) pixels
-- have been written.

-- Three counters are used, to keep track of the col/row and
-- when to write.

-- The memory is split in two parts, allowing us to read from one

-- part while (we don't read & write at the same time, we just

-- write in one part in order not to overwrite the data needed for the
-- current state) writing in the other, and vice-versa.

- ADDR = Osrrrrrrrrrccccc
-- which memory to use => 1 bit ~

-- row (0-479) => 9 bits NANNANNAN

-- col (0-1024) => 5 most significant bits ANNNA

-- Note: the MSB is always 0, so half the memory address space isn't used.

-- This unit depends on
-- counter
- rs232_input_shift register

-- Note: life_ input _done is not raised at the same time as the
- last life ram write (it takes 4 (?2?) clk ticks to propagate
-- through the counters)

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

entity life input is
port (clk: in std logic;

reset: in std logic;
-- rs232
life recv_ack: in std logic;
life recv_data: in std logic_vector (7 downto 0);
-- mem
life input write req: out std logic;
life input write ack: in std logic;
life_input_addr: out std_logic_vector (15 downto 0);
life input data: out std logic_vector (31 downto 0);
life input done: out std logic);

end life input;

architecture synth life input of life input is
component counter is
port (clk: in std logic;
reset: in std logic;
inc: in std logic;
data: in std logic vector (9 downto 0);
timeout: out std logic;
value: out std logic vector (9 downto 0));
end component;
signal byte timeout, col timeout, row timeout: std logic;
signal byte value, col value, row_value, byte data, col _data, row_data
std logic vector (9 downto 0);

component rs232_ input shift register is
port (clk: in std logic;

Page 25

Advanced Digital Design

datain: in std logic_vector (7 downto 0);

shift: in std logic;

dataout: out std logic vector (31 downto 0));
end component;

begin
byte data <= conv_std logic vector (3, 10)
col data <= conv_std logic vector (19, 10)
row_data <= conv_std logic vector (479, 10

;
;
)i

byte counter: counter port map (clk => clk, reset => reset, inc => life recv _ack, data
byte data,

timeout => byte timeout, value => byte value);
col counter: counter port map (clk => clk, reset => reset, inc => byte timeout, data
col data,

timeout => col timeout, value => col value);
row_counter: counter port map (clk => clk, reset => reset, inc => col timeout, data
row_data,

timeout => row_timeout, value => row value);

shift reg: rs232 input shift register port map (clk => clk, datain => life recv_data,

shift => life recv_ack, dataout => life input data);

life input addr <= "00" & row value(8 downto 0) & col value(4 downto 0);
life input done <= row_timeout;
life input write req <= byte timeout;

end synth life input;

life_ram.vhd

life ram.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This unit is used to load 9 times 32 "pixels" into the large cell unit
-- calculate the next generation for the 32 pixels, and write
-- the result back into the RAM.

-- In order to keep this unit in sync with the vga code, we must
-- respect a 32 clk cycle.

-- Rules to swap memory:

-- life ram must be done (must be in waiting state)

-- vga must reach bottom of screen

-- If the swap happens then a flag must be set (because the vsync signal

-- lasts for a long time) and the life ram must be aware of it (restart must
-- be set).

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity life ram is
port(clk: in std logic;
reset: in std logic;
mode: in std logic_vector(l downto 0);
sync_counter: in std logic vector (9 downto 0);

start: in std logic;
-- enable/disable the life calculation -- restart calculation (send from vga ram
-—after the swap has happened)

-- we need to start signals, one that comes from life (that is used to

-- start when the rs232 finishes but before the first swap, the second

-- to restart once the swap has happened. this is due to the fact that we

-- wanted to be able to debug easily. An alternative would have been

-- to always first swap then calculate, and the first screen would be

-- wrong but nobody would notice.

life ram done: out std logic; -- tell the system that the memory can be swapped.

life ram load read req: out std logic;

life ram load read ack: in std logic;

life ram load data: in std logic_vector (31 downto 0);

life ram load addr: out std logic vector (15 downto 0);

life ram save write req: out std logic;

life ram save write ack: in std logic;

Page 26

Advanced Digital Design

life ram save data: out std logic vector (31 downto 0);
life ram save_ addr: out std logic vector (15 downto 0));
end life ram;

architecture synth life ram of life ram is
component counter is
port (clk: in std logic;
reset: in std logic;
inc: in std logic;
data: in std logic_vector (9 downto 0);
timeout: out std logic;
value: out std logic_vector (9 downto 0));
end component;
component large cell is
port(n, m, s: in std logic vector (33 downto 0);
newgen: out std logic_vector (31 downto 0));
end component;
-- we need to convert 9x32 bits into the 3x34 bits that interest us (input for
large cell)
signal tnw, tn, tne, tw, tm, te, tsw, ts, tse: std logic_vector (31 downto 0);
signal n, m, s: std logic vector (33 downto 0);
signal newgen: std _logic_vector (31 downto 0);
—-— counters
signal col value, row value, col data, row data: std logic vector (9 downto 0);
signal col timeout, row timeout: std logic;
-- we need to calculate or keep track of the previous and next values of the counters
signal rowml, rowpl, colml, colpl: std logic vector (9 downto 0);
type state is (stopped, paused, waiting, 11, 12, 13, 14, 15, 16, 17, 18, 19, w, r);
signal current state, next state : state;
—— CONTROL SIGNALS
signal ctrl col inc: std logic;
signal save data: state;
signal ctrl reset: std logic;
begin
col data <= conv_std logic vector (19, 10);
col_counter_unit: counter port map (clk => clk, reset => ctrl reset, inc =>
ctrl col inc, data => col data, timeout => col timeout, value => col value);
row_data <= conv_std logic_vector (479, 10);
row_counter unit: counter port map (clk => clk, reset => ctrl reset, inc =>
col timeout, data => row_data, timeout => row_ timeout, value => row value);
large cell unit: large cell port map (n =>n, m =>m, s => s, newgen => newgen);

process (clk, reset)

begin
if (reset = '1l') then
current state <= stopped;
tnw <= (others => '0'); tn <= (others => '0'); tne <= (others => '0");
tw <= (others => '0'); tm <= (others => '0'); te <= (others => '0');
tsw <= (others => '0'); ts <= (others => '0'); tse <= (others => '0");

elsif (clk'event and clk='1l"') then
current_state <= next state;

case save _data is

when 11 =>

tnw <= life ram load data;
when 12 =>

tn <= life ram load data;
when 13 =>

tne <= life ram load data;
when 14 =>

tw <= life ram load data;
when 15 =>

tm <= life ram load data;
when 16 =>

te <= life ram load data;
when 17 =>

tsw <= life ram load data;
when 18 =>

ts <= life ram load data;
when 19 =>

tse <= life ram load data;
when others => null;

end case;
end if;
end process;

Page 27

Advanced Digital Design

life_ram_save_data <= newgen;

life ram save addr <= "00" & row value (8 downto 0)

process (reset, current state,
life ram load read_ack,
begin
life ram save write req <= '0';
life ram load read req <= '0';
life ram load addr <= (others =>
ctrl col inc <= '0';
save_data <= paused;
life ram done <= '0';
if (mode = "00") then
next state <= stopped;
ctrl reset <= '1';
else
ctrl reset <= reset;
case current state is

when stopped =>
next state <= waiting;

when paused =>
to be activated.

life ram done <= 'l1';
if (start = 'l') then
next state <= waiting;
else
next state <= paused;
end if;

when waiting =>
if (row_timeout = '1'")
next state <= paused;
elsif (sync_counter
next state <= 11;

then

start, mode,
rowml,

& col value(4 downto 0);

sync_counter,
colml, rowpl,

row_timeout,

colpl, row value, col value)

0

conv_std logic vector (31,

the default behaviour is to wait for

-- wait for sync to happen

-- end of calculation of entire map
10)) then

else
next state <= waiting;
end if;
when 11 => -- load 9 times 32 pixels.
life ram load read req <= 'l';
life ram load addr <= "00" & rowml (8 downto 0) & colml (4 downto 0);
if (life ram load read ack = 'l') then
save_data <= 11;
next state <= 12;
else
next state <= 11;
end if;
when 12 =>
life ram load read req <= 'l';
life ram load addr <= "00" & rowml (8 downto 0) & col value(4 downto 0);
if (life ram load read ack = 'l') then
save_data <= 12;
next state <= 13;
else
next state <= 12;
end if;
when 13 =>
life ram load read req <= 'l';
life ram load addr <= "00" & rowml (8 downto 0) & colpl (4 downto 0);
if (life ram load read ack = 'l') then
save_data <= 13;
next state <= 14;
else
next state <= 13;
end if;
when 14 =>
life ram load read req <= 'l';
life ram load addr <= "00" & row value (8 downto 0) & colml (4 downto 0);

Page 28

start

Advanced Digital Design

if (life ram load read ack = 'l') then
save_data <= 14;
next state <= 15;

else
next state <= 14;

end if;

when 15 =>

life ram load read req <= 'l';
life ram load addr <= "00" & row value (8 downto 0) & col value(4 downto 0);
if (life ram load read ack = 'l') then

save_data <= 15;

next state <= 16;
else

next state <= 15;
end if;

when 16 =>

life ram load read req <= 'l';
life ram load addr <= "00" & row value (8 downto 0) & colpl(4 downto 0);
if (life ram load read ack = 'l') then

save_data <= 16;

next state <= 17;
else

next state <= 16;
end if;

when 17 =>

life ram load read req <= 'l';
life ram load addr <= "00" & rowpl (8 downto 0) & colml (4 downto 0);
if (life ram load read ack = 'l') then

save_data <= 17;

next state <= 18;
else

next state <= 17;
end if;

when 18 =>

life ram load read req <= 'l';
life ram load addr <= "00" & rowpl (8 downto 0) & col value(4 downto 0);
if (life ram load read ack = 'l') then

save_data <= 18;

next state <= 19;
else

next state <= 18;
end if;

when 19 =>

life ram load read req <= 'l';
life ram load addr <= "00" & rowpl (8 downto 0) & colpl (4 downto 0);
if (life ram load read ack = 'l') then

save_data <= 19;

next state <= w;
else

next state <= 19;
end if;

when w =>
next state <= r;

when r => -- and simply write result back in ram
life ram save write req <= 'l';
ctrl col inc <= '1"';

next state <= waiting;

when others => null;
end case;
end if;
end process;

process (tnw, tn, tne, tw, tm, te, tsw, ts, tse)
begin
n(33) <= tnw(0); m(33) <= tw(0); s(33) <= tsw(0);
n (32 downto 1) <= tn (31 downto 0);
m (32 downto 1) <= tm(31 downto 0);
s (32 downto 1) <= ts (31 downto 0);

Page 29

Advanced Digital Design

n(0) <= tne(31); m(0) <= te(31l); s(0) <= tse(31);
end process;

process (row_value)
begin
if (row_value = conv_std logic_vector (0, 10)) then
rowml <= conv_std logic vector (479, 10);
rowpl <= conv_std logic_vector(l, 10);
elsif (row _value = conv_std logic vector (479, 10)) then
rowml <= conv_std logic_vector (478, 10);
rowpl <= conv_std logic vector (0, 10);

else
rowml <= row value - conv_std logic vector(l, 10);
rowpl <= row_value + conv_std logic vector(l, 10);
end 1if;

end process;

process (col_value)
begin
if (col value = conv_std logic_vector (0, 10)) then
colml <= conv_std logic vector (19, 10);
colpl <= conv_std logic_vector(l, 10);
elsif (col value = conv_std logic vector (19, 10)) then
colml <= conv_std logic vector(18, 10);
colpl <= conv_std logic vector (0, 10);

else
colml <= col value - conv_std logic vector(l, 10);
colpl <= col value + conv_std logic vector(l, 10);
end if;

end process;
end synth life ram;

mem_controller.vhd

-- mem_controller.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This is the memory controller. It decides who between the
-- different components (life input, life calc, vga, image writer,
-- image reader, ram tester) gets to access the ram.

-- Every read/write is acknowledged (Note: for now the write
-- 1is acknowledged before (2 clock cycles) the write actually finishes).

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity mem controller is
port(clk: in std logic;
reset: in std logic;
ram data: inout std logic_vector (31 downto 0);
ram addr: out std logic vector (15 downto 0);
ram cs: out std logic;
ram_we: out std logic;

ram_swap: in std logic; -- this allows us to

select which part in memory to use.
-- life input (WRITE)
life input write req: in std logic;
life input write ack: out std logic;
life input_addr: in std_logic_vector (15 downto 0);
life input data: in std logic vector (31 downto 0);
-- img input (WRITE)
img_input write req: in std logic;
img_input write_ack: out std logic;
img_input addr: in std logic vector (15 downto 0);
img_input data: in std logic vector (31 downto 0);
-- mem_tester (READ)
mem tester read req: in std logic;
mem tester read ack: out std logic;
mem tester addr: in std logic vector (15 downto 0);
mem tester data: out std logic vector (31 downto 0);

Page 30

Advanced Digital Design

-- life ram load (READ)
life ram load read req: in std logic;
life ram load read ack: out std logic;
life ram load addr: in std logic_vector (15 downto 0);
life ram load data: out std logic vector (31 downto 0);
-- life ram save (WRITE)
life ram save write req: in std logic;
life ram save write_ack: out std logic;
life ram save addr: in std logic vector (15 downto 0);
life ram save data: in std logic_vector (31 downto 0);
-- vga_ram (READ)
vga_ram_read req: in std logic;
vga_ram read without mem swap: in std logic;
vga_ram_read _ack: out std logic;
vga_ram addr: in std logic vector (15 downto 0);
vga_ram _data: out std logic_vector (31 downto 0);
but2, but3: in std logic);

end mem_controller;

architecture synth mem controller of mem controller is
type state is (init, w0, wl, w2, r0);
signal current state, next state: state;
signal buf data: std logic vector (31 downto 0);
signal buf addr: std logic_vector (15 downto 0);
type load from 1is (none, 1life input, img input, 1life ram load, life ram save,
mem_tester, vga_ram);
signal current ram : std logic;
—— CONTROL SIGNALS
signal ctrl buf: load from;
begin
ram_addr <= buf addr;

process (clk, reset)
begin
if (reset='1l') then
current state <= init;
buf data <= (others => '0'");
buf addr <= (others => '0');
life input write ack <= '0';
img_input write ack <= '0';
life ram save write ack <= '0';
mem_ tester read ack <= '0';
life ram load read ack <= '0';
vga_ram_read ack <= '0';
current ram <= '0';
elsif (clk'event and clk='1l"') then
current state <= next state;

life input write ack <= '0';
img_input write ack <= '0';
life ram save write ack <= '0';
mem_ tester read ack <= '0';
life ram load read ack <= '0';
vga_ram_read ack <= '0';

if (ram swap = 'l') then
current ram <= not(current ram);
end if;

case ctrl buf is

when img input =>
buf addr <= img input_addr (15 downto 0);
buf data <= img_ input data;
img_input write ack <= 'l';

when life input =>
buf addr <= current ram & life input addr (14 downto 0);
buf data <= life input data;
life input write ack <= 'l1';

when life ram load =>
buf addr <= current ram & life ram load addr (14 downto 0);

life ram load read ack <= 'l1';
when mem tester =>
if (but2 = '1') then
buf addr <= not(current ram) & mem tester addr (14 downto 0);
else

buf addr <= current ram & mem tester addr (14 downto 0);

Page 31

Advanced Digital Design

end if;
mem_ tester read ack <= 'l1';
when life ram save =>
buf addr <= not(current ram) & life ram save addr (14 downto 0);
buf data <= life ram save data;
life ram save write ack <= '1l';
when vga ram =>
if (vga_ram read without mem swap = 'l') then
buf addr <= vga ram addr (15 downto 0);
else
if (but3 = 'l') then
buf addr <= not(current ram) & vga ram addr (14 downto 0);
else
buf addr <= current ram & vga ram addr (14 downto 0);
end if;
end if;
vga_ram read ack <= 'l1';
when others => null;
end case;
end if;
end process;

process (current state, img input write req, life input write req, mem tester read req,
life ram load read req, life ram save write req,
buf addr, buf data, ram data, vga ram read req)

begin
mem_tester data <= "00100010001000100010001000100010"; -- this data should
life ram load data <= "00100010001000100010001000100010"; -- never be used.
vga_ram data <= "00100010001000100010001000100010"; -- never be used.
ram cs <= '0';
ram we <= '0';

ctrl buf <= none;
case current state is

when init =>

ram data <= (others => 'Z'");

if (life input write req = 'l') then
ctrl buf <= life input;
next state <= w0;

elsif (img input write req
ctrl _buf <= img input;
next state <= w0;

elsif (mem tester read req = 'l') then
ctrl buf <= mem tester;
next state <= r0;

elsif (life ram load read req = 'l') then
ctrl buf <= life ram load;
next state <= r0;

elsif (life_ram save write req = 'l') then
ctrl buf <= life ram save;
next state <= w0;

elsif (vga ram read req = 'l') then
ctrl _buf <= vga ram;
next state <= r0;

else
next state <= init;

end if;

'l'") then

when w0 =>
ram data <= buf data;
ram cs <= '1';
ram we <= '1"';
next state <= wl;

when wl =>
ram data <= buf data;
ram cs <= '1';
ram we <= '1"';
next state <= w2;

when w2 =>
ram data <= buf data;
ram cs <= '1';

Page 32

Advanced Digital Design

ram we <= '1"';
next state <= init;

when r0 =>
mem tester data <= ram data;
life ram load data <= ram data;
vga_ram data <= ram data;
ram cs <= '1';
next state <= init;

end case;
end process;
end synth mem controller;

mem_tester.vhd

-- mem_tester.vhd

-- Coded by Alok Menghrajani & Peter Amrhyn

-- This is a component to test the memory.

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity mem tester is
port(clk: in std logic;
reset: in std logic;

debug start: in std logic; -- when this signal is set to 1, the mem tester

will start dumping the memory.
mem tester read req: out std logic;
mem tester read ack: in std logic;
mem tester addr: out std logic vector (15 downto 0);
mem tester data: in std logic vector (31 downto 0);
byte send done: in std logic;
byte send data: out std logic vector (7 downto 0);
byte sending: out std logic);

end mem tester;

architecture synth mem tester of mem tester is
component counter is
port (clk: in std logic;
reset: in std logic;
inc: in std logic;
data: in std logic vector (9 downto 0);
timeout: out std logic;
value: out std logic_vector (9 downto 0));
end component;

type state is (init, waiting, fetching, newline);
signal current state, next state: state;
signal counterl timeout, counter2 timeout: std logic;

signal counterl value, counter2 value, counterl data, counter2 data: std logic vector(9

downto 0);
—-—- CONTROL SIGNALS
signal ctrl incl, ctrl inc2: std logic;
-— mem_tester ram req
-- rs232 send byte req
begin
-- counterl is the number of memory cols to display
-- counter2 is the number of memory lines (rows) to display
counterl data <= conv_std logic vector (5, 10);
counter2 data <= conv_std logic_vector (5, 10);
mem tester addr <= "00" & counter2 value (8 downto 0) & counterl value(6 downto 2);

process (clk, reset)
begin
if (reset = 'l') then
current state <= init;
elsif (clk'event and clk='l') then
current_state <= next_state;
end 1if;
end process;

Page 33

Advanced Digital Design

counterl_unit: counter port map (clk => clk, reset => reset,

counterl data, timeout => counterl timeout,

value => counterl value);
counter2 unit: counter port map (clk => clk, reset => reset,

counter2 data, timeout => counter2 timeout,

value => counter2 value);

inc => ctrl incl, data =>

inc => ctrl inc2, data =>

-- the byte to send will depend on the 2 lower bits of counterl

process (counterl_value, mem tester data)

begin
if (counterl value(l downto 0) = "11") then
byte send data <= mem tester data(7 downto 0);
elsif (counterl value(l downto 0) = "10") then
byte send data <= mem tester data (15 downto 8);
elsif (counterl value(l downto 0) = "01") then
byte send data <= mem tester data (23 downto 16);
else -- counterl value(l downto 0) = "00"
byte send data <= mem tester data (31 downto 24);
end if;

end process;

process (current state, debug start, mem tester read ack, counterl timeout,

byte send done, counter2 timeout)

begin
ctrl incl <= '0';
ctrl_inc2 <= '0';
mem tester read req <= '0';

byte sending <= '0';

case current state is
when init =>

if (debug start = 'l') then
next state <= fetching;
else
next state <= init;
end if;

when waiting =>
-- send data to rs232 and wait

if (counterl timeout = 'l') then
next state <= newline;

elsif (byte send done = '1l') then
next state <= fetching;

else
next state <= waiting;

end if;

when fetching =>
-- get data from RAM

if (counter2 timeout = 'l') then
next state <= init;
elsif (mem tester read ack = 'l') then

ctrl incl <= '1"';
byte sending <= '1';
next state <= waiting;

else
mem tester read req <= 'l';
next state <= fetching;

end 1if;

when newline =>

- wait for previous rs232 to finish (the timeout occured before the byte

-- send was done) .

if (byte send done = 'l') then
ctrl inc2 <= '1"';
next state <= fetching;

else
next state <= newline;
end if;
when others => null;
end case;

end process;
end synth mem tester;

Page 34

Advanced Digital Design

ram_swap.vhd

—-- ram_swap.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;

entity ram swap is
port (

clk, reset: in std logic;
is_vsync: in std logic;
life ram done: in std logic;
mode: in std logic_vector(l downto 0);
but4: in std logic;
ram_swap: out std logic);

end ram_ swap;

architecture synth ram swap of ram swap is
type state is (can_swap, swapped, stopped);
signal current state, next state: state;

begin
process (clk, reset)
begin
if (reset = 'l') then

current state <= stopped;
elsif (clk'event and clk='l') then
current_state <= next_state;
end 1if;
end process;

process (current state, is vsync, life ram done, mode, but4)

begin
ram_swap <= '0';
if (mode = "00") then
next state <= stopped;
elsif (mode = "O01") then

case current state is
when stopped =>
next state <= can_swap;

when can_swap =>

if ((is_vsync = 'l') and (life _ram done = 'l') and (but4 = '0')) then
ram_swap <= '1';
next state <= swapped;

else
next_state <= can_swap;

end if;

when swapped =>

if (is _vsync = '0') then
next state <= can_swap;
else
next state <= swapped;
end 1if;
end case;
else
next state <= stopped;
end 1if;

end process;
end synth ram swap;

rs232_multiplex.vhd

-- rs232 multiplex.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This code allows us to simultaneously have
-- an image renderer and game of life running.

-—- It basically looks at the first 8 bits,
-- if it's a 0x0l then the data is interpreted for

Page 35

Advanced Digital Design

-- the game of life.
-- 1f it's a 0x02 then the data is interpreted for
-- the image renderer.

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;

entity rs232 multiplex is
port (
clk, reset: in std logic;
rs232 _recv_ack: in std logic;
rs232 _recv_data: in std logic vector (7 downto 0);
-- life
life recv_ack: out std logic;
life recv_data: out std logic_vector (7 downto 0);
life done: in std logic;
-- img
img recv_ack: out std logic;
img recv_data: out std logic vector (7 downto 0);
img done: in std logic);
end rs232 multiplex;

architecture synth rs232 multiplex of rs232 multiplex is
type state is (idle, life, img);
signal current state, next state: state;

begin
process (clk, reset)
begin
if (reset='1l') then

current state <= idle;
elsif (clk'event and clk='1l"') then
current state <= next state;
end if;
end process;

life recv data <= rs232 recv_data;
img recv_data <= rs232 recv_data;

process (current_state, rs232 recv_ack, rs232 recv _data, life done, img done)

begin
life recv_ack <= '0';
img recv_ack <= '0';

case current state is

when idle =>

if (rs232 recv_ack = 'l') then
if (rs232 recv _data = conv_std logic vector(l, 8)) then
next state <= life;
elsif (rs232 recv _data = conv_std logic vector (2, 8)) then
next state <= img;
else
next state <= idle;
end if;
else
next state <= idle;
end if;

when life =>

if (life done = '1'") then
next state <= idle;
elsif (rs232 recv_ack = 'l') then
life recv_ack <= 'l1';
next state <= life;
else
next state <= life;
end if;

when img =>
if (img done = '1l') then
next state <= idle;
elsif (rs232 recv_ack = 'l') then
img _recv_ack <= '1"';
next state <= img;
else

Page 36

Advanced Digital Design

next state <= img;
end if;
end case;
end process;

end synth rs232 multiplex;

rs232_recv.vhd

-- rs232_recv.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This unit allows us to write data into the ram through
-- the serial port. (For now, this unit only reads from the
-- serial port, it doesn't write to it).

-- The input for this unit are the reset, clk and rx.

-- The settings for the terminal should be:
-- 115'000 bauds, 1 start bit, 8 data bits, 1 stop bit,
-- no party bits, no flow control.

-- This unit depends on:
- counter
- rs232 recv_shift register

-- This unit uses two counters (one to keep track of the
-- 115000 bauds tming and one to keep track of the 8 bits
-— to be read).

-- Note: It is very IMPORTANT to have the rx (because it is
-- an external signal) go through a set of registers (2 or 3
-- levels) to avoid metastable states.

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity rs232 recv is
port(clk: in std logic;
reset: in std logic;
rx: in std logic;
rs232 recv_ack: out std logic;
rs232 recv_data: out std logic vector (7 downto 0));
end rs232_recv;

architecture synth rs232 recv of rs232 recv is
component counter is

port (clk: in std logic;
reset: in std logic;
inc: in std logic;
data: in std logic_vector (9 downto 0);
timeout: out std logic;
value: out std logic vector (9 downto 0));

end component;
component rs232 recv_shift register is
port (clk: in std logic;
datain: in std logic;
shift: in std logic;
dataout: out std logic_vector (7 downto 0));
end component;

type state is (init, startbit, datawait, dataread, stopbit, stopbit2);
signal current state: state;
signal next state: state;

-- sreg enables the shift register
signal sreg: std logic;

-- unitl is a counter to respect the 115200 bauds rate.

-- unit2 is a counter to read 8 bits (and save them in reg).
signal unitl counter: std logic vector (9 downto 0);

signal unit2 counter: std logic vector (9 downto 0);

signal unitl timeout: std logic;

Page 37

Advanced Digital Design

signal unit2 timeout: std logic;
signal unitl enable: std logic;
signal unit2 enable: std logic;
signal unitl value: std logic_vector (9 downto 0);
signal unit2 value: std logic vector (9 downto 0);
begin
unitl: counter port map(clk => clk,
reset => reset,
inc => unitl enable,
data => unitl counter,
timeout => unitl timeout,
value => unitl value);
unit2: counter port map(clk => clk,
reset => reset,
inc => unit2 enable,
data => unit2 counter,
timeout => unit2 timeout,
value => unit2 value);

shiftreg: rs232 recv_shift register port map(clk => clk,

datain => rx,
shift => sreqg,

dataout => rs232

process (reset, clk)
begin
if (reset='1l') then
current state <= init;
elsif (clk'event and clk='1l') then
current state <= next state;
end if;
end process;

process (current state, unitl timeout, unit2 timeout, rx)

begin
rs232 recv_ack <= '0'; sreg <= '0';
unitl counter <= conv_std logic vector (286, 10);
unit2 counter <= conv_std logic_vector (7, 10);
unitl enable <= '0'; unit2 enable <= '0';
case current state is
when init =>
if (rx='0') then
next state <= startbit;
else
next state <= init;
end if;
when startbit =>
unitl counter <= conv_std logic_vector (429, 10);
unitl enable <= '1"';
if (unitl timeout='l') then
next state <= dataread;

else
next state <= startbit;
end if;
when dataread =>
sreg <= '1";

unit2 enable <= '1"';
next state <= datawait;
when datawait =>
unitl enable <= '1';
if (unit2 timeout='l') then
next state <= stopbit;

elsif (unitl timeout='l') then
next state <= dataread;
else
next state <= datawait;
end if;
when stopbit =>
rs232 recv_ack <= 'l';

unitl enable <= '1';
next state <= stopbit2;
when stopbit2 =>

unitl enable <= '1"';

if (unitl timeout='l') then
next state <= init;

else
next state <= stopbit2;

end if;

_recv_data);

Page 38

Advanced Digital Design

when others => null;
end case;
end process;
end synth rs232 recv;

rs232_recv_shift_register.vhd

-- rs232 recv_shift register.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-— This unit is a simple shift register. It is
-- used by the rs232 recv unit. It does a right shift
-- on 1 bit.

-- Note: There is no reset for this unit.

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity rs232 recv_shift register is
port(clk: in std logic;
datain: in std logic;
shift: in std logic;
dataout: out std logic vector (7 downto 0));
end rs232 recv_shift register;

architecture synth rs232 recv_shift register of rs232 recv_shift register is
signal value: std logic vector (7 downto 0);
begin
dataout <= value;
process (clk)
begin
if (clk'event and clk='1l') then
if (shift='1") then
value <= datain & value (7 downto 1);
end if;
end if;
end process;
end synth rs232 recv_shift register;

rs232_send.vhd

-- rs232_send.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This unit allows us to dump data onto the terminal
-- for debugging purpose.

-- The settings for the terminal should be:
-- 115'000 bauds, 1 start bit, 8 data bits, 1 stop bit,
-- no party bits, no flow control.

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity rs232_ send is
port(clk: in std logic;

reset: in std logic;
tx: out std logic;
rs232 send done: out std logic;
rs232_send data: in std logic vector (7 downto 0);
rs232 sending: in std logic);

end rs232 send;

architecture synth rs232 send of rs232 send is

component counter is
port (clk: in std logic;

Page 39

Advanced Digital Design

reset: in std logic;

inc: in std _logic;

data: in std logic_vector (9 downto 0);
timeout: out std logic;

value: out std logic vector (9 downto 0));

end component;
component rs232 send shift register is

port (clk: in std logic;
reset: in std _logic;
datain: in std logic_vector (7 downto 0);
load: in std logic;
shift: in std logic;
dataout: out std _logic);
end component;

type state is (init, datawait, datawrite, stopbit);
signal current state: state;
signal next state: state;

-- sreg enables the shift register
signal shift do, shift load: std logic;

-- unitl is a counter to respect the 115200 bauds rate.
-- unit2 is a counter to read 8 bits (and save them in regq).
signal unitl counter: std logic_vector (9 downto 0);
signal unit2 counter: std logic vector (9 downto 0);
signal unitl timeout: std logic;
signal unit2 timeout: std logic;
signal unitl enable: std logic;
signal unit2 enable: std logic;
signal unitl value: std logic_vector (9 downto 0);
signal unit2 value: std logic vector (9 downto 0);
begin
unitl: counter port map(clk => clk,
reset => reset,
inc => unitl enable,
data => unitl counter,
timeout => unitl timeout,
value => unitl value);
unit2: counter port map(clk => clk,
reset => reset,
inc => unit2 enable,
data => unit2 counter,
timeout => unit2 timeout,
value => unit2 value);
shiftreg: rs232 send shift register port map(clk => clk, reset => reset,
datain => rs232 send data, load =>
shift load,
shift => shift do, dataout => tx);

process (reset, clk)
begin
if (reset='1l') then
current state <= init;
elsif (clk'event and clk='1l"') then
current state <= next state;
end if;
end process;

process (current state, unitl timeout, unit2 timeout, rs232 sending)
begin
rs232_send done <= '0'; shift do <= '0';
unitl counter <= conv_std logic_vector (286, 10);
unit2 counter <= conv_std logic vector (9, 10);
unitl enable <= '0'; unit2 enable <= '0';
shift load <= '0';
case current state is
when init =>
if (rs232 sending = 'l') then
shift load <= '1';
next state <= datawait;
else
next state <= init;
end if;
when datawrite =>

Page 40

Advanced Digital Design

shift do <= '1';

unit2 enable <= '1';

next state <= datawait;
when datawait =>

unitl enable <= '1"';

if (unit2_ timeout='l') then
next state <= stopbit;

elsif (unitl timeout='l') then
next state <= datawrite;

else
next state <= datawait;

end if;

when stopbit =>
rs232_send done <= '1l';
next state <= init;
when others => null;
end case;
end process;
end synth rs232 send;

rs232_send_byte.vhd

-- rs232_send byte.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity rs232_send _byte is
port(clk: in std logic;

reset: in std logic;
byte send data: in std logic vector (7 downto 0);
byte sending: in std logic;
byte send done: out std logic;
rs232 send done: in std logic;
rs232 send data: out std logic_vector (7 downto 0);
rs232 sending: out std logic);

end rs232 send _byte;

architecture synth rs232 send byte of rs232 send byte is
component counter is

port (clk: in std logic;
reset: in std logic;
inc: in std logic;
data: in std logic vector (9 downto 0);
timeout: out std logic;
value: out std logic vector (9 downto 0));

end component;
signal counter inc, counter timeout: std logic;

signal counter data, counter value: std logic vector (9 downto 0);

signal shift do, shift load: std logic;
signal data : std logic vector (7 downto 0);
type state is (init, datawait, datashift, space);

signal current state: state;
signal next state: state;
begin
counter data <= conv_std logic vector (7, 10);
counter unit: counter port map(clk => clk,
reset => reset,
inc => counter inc,
data => counter data,
timeout => counter_ timeout,
value => counter value);
process (reset, clk)
begin
if (reset='1l') then
current state <= init;
data <= (others => '0"');
elsif (clk'event and clk='l') then
current_state <= next_state;

Page 41

Advanced Digital Design

if (shift load = 'l') then
data <= byte send data;
elsif (shift do = '1l') then
data <= data(6 downto 0) & '0';
end if;
end if;
end process;

process (data, counter timeout)

begin
if (counter timeout = 'l') then
rs232_send _data <= conv_std logic vector (32,
else
if (data(7) = '0') then
rs232_send data <= "00110000"; -- ascii 0
else
rs232_send data <= "00110001"; -- ascii 1
end if;
end if;

end process;

process (current state, byte sending, counter_ timeout,

begin
shift do <= '0'; shift load <= '0';
rs232_sending <= '0'; counter inc <= '0';

byte send done <= '0';
case current state is
when init =>
if (byte sending = 'l') then
shift load <= '1';
next state <= datawait;
else
next state <= init;
end if;
when datashift =>
shift do <= '1';
counter inc <= 'l1l';
next state <= datawait;
when datawait =>
rs232_sending <= '1';
if (rs232 send done='l'") then
next state <= datashift;

elsif (counter timeout='l') then
next_state <= space;

else
next state <= datawait;

end if;

when space =>
rs232_sending <= 'l1';
if (rs232_send done = 'l') then
]

byte send done <= 'l1';
next state <= init;
else
next_state <= space;
end if;
when others => null;
end case;

end process;
end synth rs232 send byte;

rs232_send_shift_register.vhd

-- rs232_send_shift register.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

-- This unit is a simple shift register. It is

-- used by the rs232 send unit. It does a right shift

-- on 1 bit.

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

-- ascii spc

rs232_send_done)

Page 42

Advanced Digital Design

entity rs232 send shift register is
port(clk: in std logic;
reset: in std logic;
datain: in std logic_vector (7 downto 0);
load: in std logic;
shift: in std logic;

dataout: out std _logic);
end rs232 send shift register;

architecture synth rs232 send shift register of rs232 send shift register is
signal value: std _logic_vector (9 downto 0);
begin
dataout <= value(0);
process (clk, reset)
begin

if (reset = '1l') then
value <= (others => '1");
elsif (clk'event and clk='1l"') then

if (load = '1l') then
value(9) <= '1"'; -- stop bit
value (8 downto 1) <= datain; -- data
value (0) <= '0'; -- start bit

elsif (shift = '1l') then
value <= '1l' & value(9 downto 1);

end if;

end if;

end process;
end synth rs232 send shift register;

vga.vhd

-- vga.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic_arith.all;

entity vga is
port (
clk, reset: in std logic;
hsync, vsync: out std logic;
is_hsync, is_vsync, is_sync: out std logic;
valuel, value2: out std logic vector (9 downto 0));
end vga;

architecture synth vga of vga is
component vga controlh is
port (

clk: in std logic;
reset: in std logic;
timeoutl: in std logic;
datal: out std logic vector (9 downto 0);
hsync: out std logic;
incl: out std logic;
inc2: out std logic;
syncl: out std logic);

end component;

component vga controlv is
port (

clk: in std logic;
reset: in std logic;
timeout2: in std logic;
data2: out std logic vector (9 downto 0);
sync2: out std logic;
vsync: out std logic);

end component;

component counter
port(clk: in std logic;

Page 43

Advanced Digital Design

reset: in std logic;

inc: in std_logic;

data: in std logic_vector (9 downto 0);

timeout: out std logic;

value: out std logic vector (9 downto 0));
end component;

signal data, datal: std logic_vector (9 downto 0);

signal incl, inc2, timeout, timeoutl: std logic;

signal syncl, sync2: std logic;
begin

I0: vga_controlh port map (clk => clk, reset => reset, timeoutl => timeout, datal =>
data, hsync => hsync,

incl => incl, inc2 => inc2, syncl => syncl);

Il: vga controlv port map (clk => clk, reset => reset, timeout2 => timeoutl, dataz2 =>
datal, sync2 => sync2, vsync => vsync);

counterl: counter port map (clk => clk, reset => reset, inc => incl, data => data,
timeout => timeout, value => valuel);

counter2: counter port map (clk => clk, reset => reset, inc => inc2, data => datal,
timeout => timeoutl, value => value2);

is_hsync <= syncl;

is _vsync <= sync2;

is_sync <= syncl or sync2;
end synth vga;

vga_controlh.vhd

-- vga_controlh.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;

entity vga controlh is
port (
clk: in std logic;
reset: in std logic;
timeoutl: in std logic;
datal: out std logic vector (9 downto 0);
hsync: out std logic;
incl: out std logic;
inc2: out std logic;
syncl: out std logic);
end vga_ controlh;

architecture synth of vga controlh is
type state is (hw, hsl, hs2, hs3);
signal current state: state;
signal next state: state;

begin
incl <= '1"';
process (reset, clk)
begin

if (reset='l'"') then
current_state <= hw;
elsif (clk'event and clk='l') then
current_state <= next_state;
end 1if;
end process;

process (timeoutl, current state)
begin
case current state is
when hw =>
datal <= conv_std logic vector (639, 10);
inc2 <= '0';
syncl <= '0"';
hsync <= '1';
if (timeoutl = '0') then
next state <= hw;
else
next state <= hsl;
syncl <= '1"';

Page 44

Advanced Digital Design

hsync <= '1"';

inc2 <= '0"';
datal <= conv_std logic vector (19, 10);
end if;

when hsl =>
datal <= conv_std logic_vector (19, 10);
inc2 <= '0"';

syncl <= '1"';

hsync <= '1"';

if (timeoutl = '0') then
next state <= hsl;

else

next state <= hs2;
datal <= conv_std logic_vector (95, 10);
inc2 <= '0"';
syncl <= '1"';
hsync <= '0';
end if;
when hs2 =>
datal <= conv_std logic_vector (95, 10);
inc2 <= '0"';

syncl <= '1"';

hsync <= '0';

if (timeoutl = '0') then
next state <= hs2;

else

next state <= hs3;
datal <= conv_std logic_vector (43, 10);
inc2 <= '0"';
syncl <= '1"';
hsync <= '1"';
end if;
when hs3 =>
datal <= conv_std logic_vector (43, 10);
inc2 <= '0"';

syncl <= '1"';

hsync <= '1"';

if (timeoutl = '0') then
next state <= hs3;

else

next state <= hw;
datal <= conv_std logic_vector (639, 10);
inc2 <= '1";
syncl <= '0';
hsync <= '1"';
end if;
end case;
end process;
end synth;

vga_controlv.vhd

-- vga_controlv.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;

entity vga controlv is
port(clk: in std logic;
timeout2: in std logic;
reset: in std logic;
sync2: out std logic;
vsync: out std logic;
data2: out std logic vector (9 downto 0));
end vga_controlv;

architecture synth of vga controlv is
type state is (vw, vsl, vs2, vs3);
signal current state: state;
signal next state: state;

begin
process (reset, clk)
begin

Page 45

Advanced Digital Design

if (reset='1l') then
current_state <= vw;
elsif (clk'event and clk='1l"') then
current_state <= next state;
end 1if;
end process;

process (current_state, timeout2)
begin
case current state is
when vw =>
data2 <= conv_std logic_vector (479,
sync2 <= '0';

vsync <= '1';

if (timeout2 = '0') then
next_state <= vw;

else

next state <= vsl;
data2 <= conv_std logic vector (13,
sync2 <= '1';
vsync <= '1';
end if;
when vsl =>

10);

10);

data2 <= conv_std logic_vector (13, 10);

syncz2 <= 'l1"';

vsync <= '1';

if (timeout2 = '0') then
next state <= vsl;

else

next state <= vs2;

data2 <= conv_std logic vector (0, 10);

sync2 <= '1"';
vsync <= '0';
end if;

when vs2 =>

data2 <= conv_std logic_vector (0, 10);

syncz2 <= 'l1"';

vsync <= '0';
if (timeout2 = '0') then
next state <= vs2;
else
next state <= vs3;
data2 <= conv_std logic vector (29,
sync2 <= '1"';
vsync <= '1';
end if;

when vs3 =>

10);

data2 <= conv_std logic_vector (29, 10);

syncz2 <= 'l1"';

vsync <= '1';

if (timeout2 = '0') then
next state <= vs3;

else

next_state <= vw;
data2 <= conv_std logic vector (479,

sync2 <= '0';
vsync <= '1';
end if;

end case;
end process;
end synth;

vga_ram.vhd

-- vga_ram.vhd

-- Coded by Alok Menghrajani & Peter Amrhyn

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

entity vga ram is
port (
clk, reset: in std logic;

10);

Page 46

Advanced Digital Design

hsync_in, vsync in, issync_in: in std logic;
col, row: in std logic vector (9 downto 0);
hsync_out, vsync out: out std logic;

r, g, b: out std logic;

vga_ram read req: out std logic;
vga_ram_read ack: in std logic;

vga_ram_addr: out std logic vector (15 downto 0);
vga_ram data: in std_logic_vector (31 downto 0);
vga_ram read without mem swap: out std logic;

mode: in std logic vector (1l downto 0);
sync_counter: in std logic_vector (9 downto 0));
end vga_ ram;

architecture synth vga ram of vga ram is
component vga_shift register is
port (clk: in std logic;
reset: in std logic;
hsync_in: in std logic;
vsync_in: in std logic;
issync_in: in std logic;
hsync _out32: out std logic;
vsync_out32: out std logic;
issync_out32: out std logic;
hsync_out8: out std logic;
vsync_out8: out std logic;
issync_out8: out std logic);
end component;
component lfsr is
port (
clk, reset: in std logic;
rand: out std logic);
end component;
signal buf: std logic vector (31 downto 0);
signal pixelr, pixelg, pixelb: std logic;
signal pixels: std _logic_vector (3 downto 0);
type status is (none, ok, failed);
signal load buf: status;
signal issync32, issync8: std logic;
signal rand: std logic;
signal hsync32, vsync32, hsync8, vsync8: std logic;
begin
vga_shift register unit:
hsync_in => hsync_in,

vga_shift register port

=> issync_in,
vsync_out32 => vsync32, issync out32 => issync32,

=> vsync8, issync out8 => issync8);

map

process (mode, row, col)
begin
if (mode = "11") then
vga_ram_addr <= row(8 downto 0) & col(9 downto 3);
else
vga_ram_addr <= "00" & row(8 downto 0)
end if;

end process;

lfsr unit: 1lfsr port map (clk => clk,
-- output depends on buf and counter's value
process (buf, sync counter, mode, rand, pixels)

reset => reset,

(clk

& col (9 downto 5);

=> clk,

reset

vsync_in => vsync_in,

=> reset,

issync_in

hsync_out32 => hsync32,

rand => rand);

hsync_out8 => hsync8, vsync_out8

begin
pixels <= (others => '0'");
pixelr <= '0'; pixelg <= '1'; pixelb <= '0';
if (mode = "00") then
pixelr <= rand;
pixelg <= rand;
pixelb <= rand;
elsif (mode = "01") then
-- life
pixelr <= buf (31 - CONV_INTEGER (sync_counter));

pixelg <= buf (31 - CONV_INTEGER (sync_ counter));
pixelb <= buf (31 - CONV_INTEGER (sync_counter));

Page 47

Advanced Digital Design

elsif (mode = "11") then

-- img

if (sync_counter (2 downto 0) = "000") then
pixels <= buf (31 downto 28);

elsif (sync_counter (2 downto 0) = "001") then
pixels <= buf (27 downto 24);

elsif (sync_counter (2 downto 0) = "010") then
pixels <= buf (23 downto 20);

elsif (sync_counter (2 downto 0) = "011") then
pixels <= buf (19 downto 16);

elsif (sync_counter (2 downto 0) = "100") then
pixels <= buf (15 downto 12);

elsif (sync_counter (2 downto 0) = "101") then
pixels <= buf (1l downto 8);

elsif (sync_counter (2 downto 0) = "110") then
pixels <= buf (7 downto 4);

elsif (sync_counter (2 downto 0) = "111") then
pixels <= buf (3 downto 0);

end if;

pixelr <= pixels(2);
pixelg <= pixels(1l);
pixelb <= pixels(0);
end 1if;
end process;

process (sync_counter, mode, vga_ ram read_ ack)

begin
vga_ram_read req <= '0';
vga_ram read without mem swap <= '0';

load_buf <= none;

if (mode = "01l") then
if (sync_counter = conv_std logic vector (30, 10)) then
vga_ram read _req <= 'l1';
load buf <= none;
elsif (sync_counter = conv_std logic_vector (31, 10)) then
vga_ram read req <= '0';
if (vga_ram read ack = 'l') then
load buf <= ok;
else
load buf <= failed;
end if;
end if;
elsif (mode = "11") then
if (sync_counter = conv_std logic vector (6, 10)) then
vga_ram read req <= 'l';
vga_ram read without mem swap <= 'l1';
load_buf <= none;
elsif (sync_counter = conv_std logic vector (7, 10)) then
vga_ram_read req <= '0';
if (vga_ram read ack = 'l') then
load _buf <= ok;
else
load _buf <= failed;
end if;
end if;
end if;
end process;

process (reset, clk)
begin
if (reset = '1l') then
r <= '0"';
g <= "'0";
b <= "'0";
hsync_out <= '1"';
vsync_out <= 'l1';
buf <= "00000000000000001111111111111111";
elsif (clk'event and clk='1l') then
if (load buf = ok) then
buf <= vga ram data;
end if;

if (mode = "11") then
hsync_out <= hsync8;
vsync_out <= vsync8;

Page 48

Advanced Digital Design

if (issync8 = 'l'") then
r <= '0"';
g <= '0';
b <= "'0";

else
r <= pixelr;
g <= pixelg;
b <= pixelb;

end if;

else

hsync_out <= hsync32;
vsync_out <= vsync32;

if (issync32 = 'l') then
r <= '0"';
g <= "'0";
b <="'0";

else
r <= pixelr;
g <= pixelg;
b <= pixelb;

end if;

end if;
end if;

end process;
end synth vga ram;

vga_shift_register.vhd

-- vga_shift register.vhd
-- Coded by Alok Menghrajani & Peter Amrhyn
library ieee;

use ieee.std logic 1164.all;
use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

entity vga shift register is
port(clk: in std logic;

reset: in std logic;
hsync_in: in std logic;
vsync_in: in std_logic;
issync_in: in std logic;
hsync out32: out std logic;
vsync_out32: out std logic;
issync_out32: out std logic;
hsync _out8: out std logic;
vsync_out8: out std logic;
issync_out8: out std logic);

end vga_shift register;

architecture synth of vga_ shift register is
signal hvalue: std logic_vector (31 downto 0);
signal vvalue: std logic vector (31 downto 0);
signal issync: std logic_vector (31 downto 0);
begin
process (reset, clk)
begin

if (reset='l') then
hvalue<= (others => '1'");
vvalue <= (others => '1"'");
issync <= (others => '0"');
elsif (clk'event and clk='1l') then
hvalue <= hsync_in & hvalue (31 downto 1);
vvalue <= vsync in & vvalue (31 downto 1);

issync <= issync_in & issync(31 downto 1);

end 1if;
end process;
hsync out32 <= hvalue(0);
vsync_out32 <= vvalue (0);
issync_out32 <= issync(0);

hsync out8 <= hvalue(24);
vsync_out8 <= vvalue (24);

Page 49

Advanced Digital Design

issync_out8 <= issync(24);
end synth;

Page 50

