Laboratoire d’Architecture des Processeurs - EPFL
Semester Project - Transparent PLD use from Java

Work:
Report:
Assistant:

Professor:

Final Report

Christophe Dubach & Alok Menghrajani
Alok Menghrajani
Miljan Vuletic

Paolo Ienne

February 2004

Special thanks to the former students Cédric
Gaudin, Stéphane Magnenat, Julien Pilet and
Damien Baumann for their continuous support.
To Miljan Vuletic and all the LAP professors
without whom nothing would have happened.

Transparent PLD use from Java

Contents
1 About This Document
2 Introduction
2.1 Embedded Systems L.
2.2 RokEPXA e
2.3 Past And Present Work
3 Project Description & Objectives
4 Developement Environment
4.1 Linux Kernel 2.6.0
4.2 NFS Support
4.3 Native-compilero
4.4 Kaffe JVM
5 Research
5.1 Inside Java And It’s Virtual Machine
5.1.1 Class Loader
5.1.2 Bytecode L.
513 BCEL
5.1.4 Java Native Interface
5.1.5 Garbage Collection
5.1.6 Java Hot Spot
5.1.7 Security Issues
52 IDEA
5.3 Generating VHDL From Java,
5.4 Different Solutions To My Project
6 Implementation
6.1 XML ConfigFile
6.2 Interfacing With JNI
6.3 Launcher Class
6.4 Custom Class Loader
7 Limitations / Improvements

Conclusions and Future work

Appendix

9.1 Code e
9.1.1 Organization,
9.1.2 Compiling & Running

9.1.3 VMWXMLParser.jj

13
13
13
15
16

17

17

Transparent PLD use from Java

9.14
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13

VMWClassLoader.java 22
VMWLauncher.java 28
VMWConstants.java 29
ClassldMethodSignature.java 30
IdMethodSignature.java 30
VMWSkeljava 0oL 31
VMWecefgxml oo 31
VMWXMLcfg.dtd 32
IdeaPlusjava L. 33
IdeaTestSw.java 36

9.2 Bibliography o 38

1 Transparent PLD use from Java

1 About This Document

I am a student at EPFL (Swiss Institute of Technology at Lausanne),
Switzerland. I am doing a Master in Computer Science. This document is
the report of my final year’s semester project: “ITransparent PLD use from
Java”. I worked at the Laboratoire d’Architecture des Processors.

Christophe Dubach was assigned a similar project (“Java virtual machine
on FPGA-based flatforms”), we therefore collaborated together and this is
the result of our combined work.

The CD-ROM included with this report contains the source code of all
our work. It also includes all the tools and libraries needed for developement.
Installation instructions are included in our report entitled: “RokEPXA
Development Environment From Scratch” which is also being submitted
simultaneously.

All the tools and libraries we used are available as part of the various
open source projects, which are constantly evolving and being updated. We
recommend using exactly the versions which we have used. We had to
correct (patch) some of these tools. Newer version might not include these
corrections.

All our work is being released under the GPL license, which means you
can copy, read, use, modify our work, but you MUST keep it under the
GPL license (which means you must also share any work based on our’s).
Christophe and I both strongly believe in open source development, we hope
our contribution to the community will be helpful.

Part of my work is based on software developed by the Apache Software
Foundation (http://www.apache.org/).

2 Introduction

2.1 Embedded Systems

The trend in the current society is to have smart chips in everyday
objects. These chips are called embedded systems because they control
one or more functions of the equipement. They are typically required to
meet very different requirements than a general-purpose personal computer
(they usually have small amount of memory, are cheap to produce and must
consume low power).

These chips can be categorized in two types:

1. Processors (which can perform general tasks)
2. Specialized chips designed for specific tasks

Designing specialized chips is complex and expensive, but it is often

Transparent PLD use from Java 2

the only way to meet real-time constraints (eg: a dsp! chip or 3d graphics
card can outperform a fast processor because it can be designed to perform
multiple calculations simultaenously).

For research and development applications, there is a special kind of chip
called FPGA? which can be programmed at the circuit level to perform a
specific task. The programming is done in the same way as for designing
a chip; that’s is in a hardware description language (eg: VHDL?). The
flexibility offered by FPGA chips comes at the cost of extra programming
effort.

2.2 RokEPXA

http://lapwww.epfl.ch/dev/arm/
We used the ROKEPXA board designed at the Laboratoire d’Architecture

des Processeurs, EPFL. This board uses Altera’s EPXA
(hitp://www.altera.com/products/devices/arm/arm-indez.html) integrated cir-
cuit which is a hybrid architecture. It combines a processor (ARM922T)
with a FPGA.

The typical usage scenario for the RokEPXA is for robots; the FPGA
controls the fundamental functions (sending signals to the motors, receiv-
ing signals from sensors, etc.) and the processor handles the higher level
behaviour (articificial intelligence, navigation, etc.).

The FPGA can also be used to connect a camera or ethernet interface.

The FPGA on the RoOkKEPXA can be programmed by the processor (by
loading a .map®* design file that is obtained by compiling the VHDL code).
This means that the processor and FPGA can share “objects”. The pro-
cessor can perform general computing while the FPGA is programmed to
compute time critical sections (coprocessor).

One of the difficulties is communication between the processor and FPGA
chip. Intensive work on this has already been done by Miljan Vuletic. He
has designed a solution called VMW?® (formely known as VIM), that allows
the coprocessor to access the virtual memory of a a user-space application.

2.3 Past And Present Work

The LAP has been working on the RokEPXA for a couple of years. When
we began our project, we had a working RokEPXA card, with a minimal
development environment (that we abandoned). We had the design files for
IDEA (we'll get back to this later) and network support.

VMW was also in it’s completion stage.

digital signal processing

2Field-Programmable Gate Array

3VHSIC (Very-High-Speed Integrated Circuit) Hardware Description Language
“In our specific environment, the .map files end with the .sbi extension
5Virtual Memory Window

3 Transparent PLD use from Java

We used a lot of open source projects such as the Linux Kernel, the Arm
Linux project, etc. (we will introduce these projects and others later in this
document). Some of these projects laked testing on our specific hardware
and lead us to spend a lot of time debugging.

3 Project Description & Objectives

We set ourselves the following objectives:

1. Creating a complete developement environement for the RokEPXA.

Christophe Dubach & Alok Menghrajani

Altough there already was a develpement environement, we ran into
trouble because it was incomplete, lacked documentation and had vari-

ous bugs. We created a fresh environement that includes: linuzx 2.6.0,

nfs support, a cross-compiler®, a native compiler, busyboz system tools,

a JVM', dynamically linked library support and floating-point emula-

tion.

2. Porting IDEAS® to Java
Christophe Dubach & Alok Menghrajani
IDEA is an encryption algorithm. We already had a C and VHDL
version, so we ported it to Java in order to test our work and mesure
performances.

3. Using the coprocessor from within Java.
Christophe Dubach
Given a .map file, we want to run it from within Java. This way we
can write most of the code in Java and only the time critical part in
VHDL. Christophe worked on this, his solution is written in C and
called from Java using JNP.

4. Transparent PLD! use from Java.
Alok Menghrajani
Given a Java method and a .map file that performs exactly the same
calculation, we want the JVM to run the .map file instead of the Java
version of the code. A PLD is the same as a FPGA.

“transparent” means that we don’t want to have the user modify the
Java source code. We ignored the aspect of how to generate the .map
file from the Java (we will talk about this in the conclusion of this
report).

SA compiler that runs on our desktop environement but produces code for the ARM
"Java Virtual Machine

8International Data Encryption Algorithm

9Java Native Interface

10Programmable Logic Device

Transparent PLD use from Java 4

4 Developement Environment

I will keep the discussion about the developement environement to the
bare minimum. You can refer to our other report “RokEPXA Development
Environment From Scratch”, submitted simultaneously.

Here is the list of software we used with a little explanation. We un-
fortunately didn’t find any complete distribution that met our needs, we
therefore compiled everything on our own.

4.1 Linux Kernel 2.6.0

http://www.kernel.org/

We decided to switch to Linux 2.6.0 (the former development environ-
ment was based on Linux Kernel 2.4.19) for stability reasons. We applied
the rmkl ARM Linux patch (http://www.arm.linux.org.uk/) and then an-
other patch called rokepxa (based on the former rokepxa patch by Cédric),
that fixes problems with the ARM Linux patch and adds support for the
specific features of RoOkKEPXA.

We activated floating-point emulation at the kernel level, because when
we tried to do it at the compiler level we ran into trouble. This method is
also more optimal (saves code) and will scale better if we someday end up
having a floating-point coprocessor in VHDL.

4.2 NFS Support

By having NFS support, we are able to transfer data between the RokEPXA
and the desktop developement machine at a much faster rate than with the
parallele port. We also no longer need to flash the ROM each time we change
or create files, because we can access them remotely.

The NFS uses the Ethernet support provided by the (rokepxa_extcam3d.sbi)
coprocessor. The only problem with NFS is that we cannot have NFS and
another coprocessor loaded at the same time.

4.3 Native-compiler

We created a native compiler “by accident”. We needed the ability to
have dynamically linked libraries. At first we thought that this is done by
“Id”. It turns out that “ld” is just the linker, the dynamic loader is in the
kernel (and all it requires is that the LD_LIBRARY PATH is set correctly).

4.4 Kaffe JVM

http://www.kaffe.org/

5 Transparent PLD use from Java

We worked with Kaffe JVM (ver 1.1.3). The main reason is because it
is open source (Sun’s code isn’t) and there might be a need to modify it. It
also scales well with our small system.

5 Research

This section documents the research we did. It should provide you with
all the knowledge needed to understand our final implementation.

5.1 Inside Java And It’s Virtual Machine

Java is a very rich programming language with many unique!! features.
When compared to other languages, Java has a layer of indirection called
the JVM. This makes it easy to run the same Java code anywhere. The
JVM is specifically designed for the Java programming languages, but can
of course run any language (as long as someone writes the compiler).

A Java program is a collection of class files. Class files are created by
compiling the java source code. The class file contains a constant pool and
Java bytecode, which is the basic instructions that the JVM understands.
The bytecode is similar to assembly, it is designed around a stack-based
architecture.

The JVM is defined by “The Java Virtual Machine Specification”. Be-
sides running bytecode, it also performs verifications (static and dynamic)
and garbage collection.

5.1.1 Class Loader

Code in Java is dynamically linked. Each time a class is referenced, a
class loader is called to locate and load the bytecode. One of the interesting
features of Java is the ability to write a custom class loader.

The JVM has a built-in primordial class loader, which it uses to load
itself. Once the JVM has started, every time a class needs to be loaded,
it is done with one of the class loader’s written in Java (usually one of
java.lang.ClassLoader, java.net.URLClassLoader, sun.applet. AppletClassLoader,
etc.).

The tasks of the class loader are:

1. Locate the bytecode (on the disk or on the network).

2. Call defineClass to check that the bytecode is properly formatted. It
also detects ClassCircularityError (when a class is itself the superclasss
of one of it’s superclasses).

3. Load the superclass (and the superclass of the superclass, and so on).

"Now being copied by others like .Net

Transparent PLD use from Java 6

4. Calls resolveClass so that the bytecode can be verified.

5.1.2 Bytecode

Java bytecode uses a stack-based architecture. So, for example, adding
2+3 requires you to do the following:

bipush 2 /* Push the number 2 on the stack. */

bipush 3 /* Push the number 3 on the stack. */

iadd /* Add the stack’s top two elements, the arguments
are poped and the result is on the stack. x/

3
2 2 5
bipush 2 bipush 3 iadd

Figure 1: adding 2+3

N\
\

stack

The bytecode also makes extensive use of strings. These strings are
stored in the constant pool and are references by their entry number. For
example an object creation or method invokation is done by it’s name (as a
string). Example of a System.out.println(“Hello World”);

/* Get the out field from System. */
getstatic java/lang/System/out Ljava/io/PrintStream;

/+ Push the constant string on the stack. %/
Idc ‘“‘Hello World’’

/* Call the println method. */
invokevirtual java/io/PrintStream/println (Ljava/lang/String;)V

There are several types of method invokation:

e invokevirtual: invokes a non-static (instance) method.
e invokestatic: invokes a static method.

e invokespecial: used for constructors.

e invokeinterface: used for interfaces.

Methods are identified by their class name, method name and signature.
A method can have several attributes:

e public: This method is available to all other classes.

e private: This method may be accessed only from within this class.

Transparent PLD use from Java

protected: This method may be accessed from any class in the same
package or any class that is a subclass of this class.

static: This method is static.
final: This method may not be overridden in subclasses.

synchronized: The JVM will obtain a lock on this object before invok-
ing the method. If this method is static, the JVM will obtain a lock
on the Class object.

native: This method is implemented in native code.

abstract: This method has no implementation.

Two methods in a given class may not have the same name and signature
(except if the argument part of the signature differ, a feature known as
method overloading). It is interesting to note that even if the attributes
differ (for eg: a static vs a non-static method) the name and signatures
must differ.

The signature is composed of two parts, the argument types and the
return type. The argument types is a list (enclosed in parenthesis). The
signature has the following format:

(typeitypestypes...) typereturn

See Table 1 for the different formats of type. For example the signature of
void main(String argv][]) is ([Ljava/lang/String;)V

Table 1: Signature formats

Type Descriptor
array of type [type

byte B

boolean Z

char C

double D

float F

int I

long J

reference to classname Lclassname;
short S

void \Y%

Transparent PLD use from Java 8

5.1.3 BCEL

http://jakarta.apache.org/beel /index.html

BCEL!? is a library that is part of the Apache/Jakarta project. This
library provides a way to manipulate Java bytecode, providing an amazing
amount of power and flexibility (when I discovered this library I felt the same
way as when I discovered Java reflexion a couple of years ago: I realized this
library provides a whole new dimension to Java).

BCEL can be used after compile time (on .class files) or at load time (by
writing a custom class loader). It has been used in many projects, including:

e compiler backends

e extending the Java language (multi-inheritence, parameterized classes!?,

preprocessor, custom bytecode, etc...)
e performing optimizations (like peep-hole)

BCEL includes a nice feature BCELifer, which takes a .class file and
generates the Java code that will generate the .class file. This tool proves
useful for testing BCEL and developement.

The BCEL libary (probably for historical reasons) has two parts: one
set of classes to read bytecode and one set to modify and generate bytecode.
This can be quite confusing at first.

5.1.4 Java Native Interface

The JVM provides a standard way of calling external code written in
C (or any other language). The C code must be compiled as a shared
library, and a JNI wrapper class must be created (that will wrap calls to
Java methods into the shared library).

JNI also provides a way for the native method to create, access and
update Java objects.

5.1.5 Garbage Collection

One of the features of Java is to have automatic memory management.
This means that the programmer doesn’t need to allocate and free memory,
it is handled automatically by the JVM (by using a technique known as
garbage collection).

Basically a garbage collector finds what objects cannot be referenced by
a program and reclaims the storage used by those objects.

At first, we thought that garbage collection could be an issue for our
project. If the coprocessor is running in parallel with the JVM, then the

12Byte Code Engineering Library
13 Java 1.5 features this

9 Transparent PLD use from Java

JVM doesn’t know what objects are still being used in the coprocessor. This
can cause the garbage collector to delete something the coprocessor might
need. Some implementations of garbage collectors also move data arround,
this can also create problems if a pointer to the data was passed to the
COProcessor.

By using JNI, we were able to ignore this aspect in our projects. JNI
keeps track of what references are being used by the native application.

5.1.6 Java Hot Spot

The nature of the Java language and it’s Virtual Machine has brought
many people to do research in the field of “Java Hot Spot”!*. The idea is
to dynamically analyse a Java program execution (know which methods are
invoked most often and where time is being spent), and to take optimization
decisions as the program executes. It is also possible to recompile a class
and dynamically replace it (HotSwap Class File Replacement).

Unfortunately, Kaffe doesn’t have anything similar yet.

5.1.7 Security Issues

Java security is very complex. To put things in a simple way: by using
a custom class loader or native methods, the security system is basically
doomed. If security is really a matter, there are ways to digitally sign the
class files in order to specify what is to be trusted. It is also possible to
specify the security level of custom generated code (such as code generated
by BCEL).

5.2 IDEA

IDEA is a cryptography algorithm. It takes 64 bit plaintext block and
encrypts it using a 128 bit key. It is a symetric algorithm, so the same key
is used to decrypt the coded text.

We used IDEA to compare the time it takes to encrypt data with a soft-
ware implementation (Java and C) as opposed to a hardware implementation
(VHDL).

5.3 Generating VHDL From Java

In theory it is possible to automatically convert Java to VHDL, probably
with under some constraints. I did not have enough time to delve into
this topic, but it can offer interesting possibilties to our projects. This is
definately a future work.

MHotSpot is actually a trademark of Sun, but I couldn’t find any generic term

Transparent PLD use from Java 10

5.4 Different Solutions To My Project

There are different ways in which I can get Java to invoke the coproces-
sor. I opted for a solution that is portable accross JVM’s. This was not a
requirement I had, but it’s an elegant method.

e Modifying the JVM at invokation level
Since we have the source code of Kaffe, we could modify the invokation
method and take a decision whether to execute the coprocessor or
normal Java code.

e Catching “no such method” exceptions
If we assume that methods implemented in the coprocessor don’t have
Java implementations, then we could catch “no such method” excep-
tions and try to run the coprocessor instead. One problem with this
solution is how to continue execution from the instruction that caused
the exception.

e Creating a custom class loader

I opted for this solution. The idea is to create a custom class loader.
This class loader is used to load all the classes. If the current class
it is loading has methods implemented in the coprocessor, the class
loader will modify the bytecode and generate a method invokation
(this solution uses Christophe’s code). If the class doesn’t need any
special treatment, the default class loader is used. This method also
has the advantage of being able to simultaneously have Java code and
a coprocessor allowing the application user to choose which method to
use.

Figure 2 illustrates how VMWClassLoader (the custom class loader)
is loaded and how it takes over the loading thereafter.

e Modifying .class files
A similar method to the above, would be to patch the .class files
before running the JVM. The advantage of this method is that it
doesn’t require a custom class loader. It does have the drawback of
being less dynamic than by having a custom class loader.

e Debugging framework
Some JVM have debugging support, which means you can write code
that interceps method invokations. This solution is probably the best
of all, because it also allows an extension to Java HotSpot technology.
We could even imagine extending HotSpot so that the JVM can receive
information about the coprocessor (method size in gates and timing).

Unfortunately I thought about this solution near the end of my project.
As mentioned previously, Kaffe doesn’t support such a feature.

11 Transparent PLD use from Java

primordial loader

default loader

VMWLauncher

default loader
| VMWClassLoader

VMW(ClassLoader

User Application

VMW(ClassLoader
- It's own objects

Figure 2: The different class loaders used at each stage

<?xml version="1.0"?>

<methodList>

<method id="1234" class="Hello"
name="patchMe"
signature="(ILjava/lang/String;)V">

public class Hello {

</method> public void patchMe(int a, String b) {

</methodList> from file VMW.run(this, 1234, a, b);

VMWefg.xml t }
/s w\em public void anotherMethod (int a) {
public class Hello { VMWXMLParser b
public void patchMe(int a, String b) { ¥
l Hello.class

b from file
public void anotherMethod (int a) { system | ynrWClassLoader | toJVM

b public class VMW {

Hello.class public native static void run(Object t,
int id, int argl, arg2);

static {
System.loadLibrary("JavavVMW");
}
¥

VMW.class

Figure 3: How VMW(ClassLoader handles the user classes and generates VMW.class

BAR[WOJJ 3sn (JTJ judredsued],

¢l

13 Transparent PLD use from Java

6 Implementation

As discussed above, I used a custom class loader VMW ClassLoader.java
to load all the classes. If the class loader needs to, it can delegate the loading
to the default loader.

6.1 XML Config File

We used an XML (VM Wecfg.zml) based configuration file. One could
argue that the coprocessor can’t be used in a transparent way if such a config
file is necessary. I will not discuss this issue here, as it was necessary for me to
find a simple way to know which methods are available as coprocessors and
for Christophe’s code to know which .map file corresponds to each method.

We opted for a XML format, because this allows us to use the same
config file for both the projects. You might think this choice is bad because
we are working with embedded systems. It turns out that the config file is
parsed only once (actually twice, once in my code and once in Christophe’s)
and the format is simple enough so we can write very efficient parsers if need
be.

Here is what it looks like:

<?xml version="1.0"7>
<methodList>
<method id="1" class="AnotherClass"
name="patchMe" signature="([S[S[S)V">
<map>test.sni</map>
</method>
</methodList>
There can be many other things inside the <method> and /method tags,
but I only use the attributes of the <method> tag (id, class, name and
signature).
T used javacc (https://javacc.dev.java.net/) to generate a parser (VMWXML-
Parser.jj).
The information I retrieve from the configuration file is saved in LinkedList
of ClassldMethodSignature.java and IdMethodSignature.java objects (these

classes are only wrapper classes).
See § 9.1.11 for the dtd of our config file.

6.2 Interfacing With JNI

The file VM Wimp.c contains the C code written by Christophe that
must be called from Java (this code gets compiled into a library called
libJavaVMW.so on Linux). This code loads the coprocessor and runs it.
The function to be called is Java_Vim_run:

Transparent PLD use from Java 14

JNIEXPORT void JNICALL Java_VIM run(JNIEnv *env, jclass cls, job-
ject this, jint id, ...).

The jobject is a pointer (it’s a real pointer; remember this is a native
function) to the object that is calling the coprocessor. This is needed if
the coprocessor wants to do callbacks to the JVM. Since we have a level of
indirection (see Figure 4), the C code is actually called from a static Java
context (the VMW.class wrapper); but we are interested in the object that
contains the static call (the patched method). The value is NULL if the
context is static.

It could have been possible to remove this level of indirection, but I think
this design is better: less work is required at class load time and it is the
only way to do things if you want to hot-swap classes in the future.

public void patchMe(int a, String b) {
. VMW.run(this, 1234, a, b); *
LY

patched method

wfl of indirection
JNI

public static native

void run(
Object argl, int arg2,
int arg3, String arg3);

VMW.class VMW imp.c
Figure 4: How the patched method invokes the library

At first we thought of passing the class name, method name and method
signature to the native library. This worked, but presented a performance
problem: for the native code to be able to manipulate the strings, it must
perform callbacks to the JVM. Since both our projects share the same con-
figuration file, we opted for an id that is attributed to each <method> tag in
the config file. The reason the native code needs to know which method is
calling it, is primarly so that it can locate the right .map file.

As you might have noticed, the C code takes a variable number of ar-
guments. Unfortunately Java doesn’t have variable number of arguments,
but it has method overloading (methods with the same name but different
signatures). On the other hand, C doesn’t have method overloading. What
JNI does is it maps every method called run in the class VM W.class to
the C function Java_ VMW _run. This means we must dynamically gener-
ate VMW.class (see Figure 3); using the XML config file, we will generate
a method declaration for each possible signature. (VMW.class is actually
generated using the VMWSkel.java skeleton file).

15 Transparent PLD use from Java

Here is an example of a VM W.java file. Of course this file never actually
exists on the disk:

public class VMW {
public native static void run(Object t, Int id, int a, String b);

static {
System.loadLibrary(VMWConstants.libFile);
3
}

At first we had thought of using an array of Objects instead of the
variable number of arguments. This has the main advantage of making the
C code simpler because working with variable arguments is a *pain*. The
array of Objects presents some problems though: primitives (int, byte, char,
etc.) must be wrapped in an Object and then unwrapped because the native
code will handle primitives differently than Objects (the native code can
manipulate primitives, but it needs to make callbacks to use Objects). The
other problem is related to performance, the C code must make multiple
callbacks to the JVM in order to manipulate the array of Objects. It is
interesting to note that Java 1.5 supports variable number of arguments,
but doesn’t solve the problem of wrapping and unwrapping primitives.

6.3 Launcher Class

Creating a custom class loader presents some problems. In order to be
able to load all the classes with the custom class loader, we need to replace
the default loader. Unfortunately this cannot be done using an environement
variable when invoking the JVM. One way to solve this problem is to modify
the class package that is included in Kaffe. There is another more elegant
way of getting arround: by using a launcher class (VM WLauncher.java).

The launcher class will be responsible for loading the user’s main class us-
ing the custom class loader and then invoking the static void main(Object]]
argv) method. The way the custom class loader is designed, it will be called
on any subsequent class loading (see Figure 2).

The launcher class uses reflection to check that the user’s main class has
a static main method. It also shifts the argv array by one element (so the
user’s main class has “no idea” there was a level of indirection).

It turns out that Kaffe has a bug, it will not allow the custom class
loader to inherit the classpath from the default loader. The work arround
involves two steps: first I declared a constant (VMWConstants.kaffebug)
which contains the path where the user’s class files reside. The second step
is a fix at the custom class loader (see below).

Transparent PLD use from Java 16

6.4 Custom Class Loader

The custom class loader (VM W<ClassLoader.java) extends URLClass-
Loader which means it can handle .jar & .zip archives too.

The first thing the loader does is parse the XML config file.

The loader contains code from Kaffe’s URLClassLoader; due to the
class loader architecture, the VM W ClassLoader.java cannot call URLClass-
Loader’s myFindClass or otherwise subsequent class loading won’t call VM W-
ClassLoader. (the URLClassLoader’s findClass calls defineClass).

The loader also contains code from BCEL due to a misdesign in the
library (you can’t directly create a ClassGen from an array of bytes).

BCEL containts a class loader, but it is not suitable for my project,
because it only loads classes with specific name patterns.

Basically the custom loader has four cases:

e The class is already loaded. We ask the JVM (findLoadedClass) if
the class is already loaded. If it is, we just return what findLoadedClass
returned.

e VMW.class needs to be dynamically created. We iterate through
the linkedlist (generated by the XML parser) and create a method
declaration for every possible signature. We mustn’t generate two
declarations if two different methods have the same signature.

e The class is listed in the XML config file. We load the class
and patch each of the methods listed in the config file. We replace the
method’s body by an invokation to:

VMW.run(this, id, arguments_of_the_original_method). The first argu-
ment is NULL if the method being patched is static. If the method is
synchronized, it will generate the monitorenter and monitorexit code.

e The class is a normal class (none of the above 3 cases). In
the case of a normal class, the custom class loader must still load it
manually (and not delegate to the system loader) in order to maintain
control over what the normal class will load. If the custom class loader
can’t find the class (this can happen in Kaffe due to the bug discussed
above), then the default System loader will be called. (This should be
fixed as soon as the bug in Kaffe is solved).

It is important to notice that the original arguments are numbered from
1 to N for non-static methods (because argument 0 is ‘this’), but from 0 to
N-1:

public static void Hello(int a) {
/* in this method, a is argument O,
it can be accessed with ILOAD(0) */

17

Transparent PLD use from Java

public void Hello2(int a) {
/* in this method, a is argument 1,
it can be accessed with ILOAD(1) */

}

Note: I discovered and fixed a bug in BCEL that prevents it from gen-
erating the right code for native methods. The fix has been accepted for
the next release of BCEL, but until then, you must use my patched version
(bcel-5.1Db).

7 Limitations / Improvements

Methods that are patched don’t return anything. Currently this is
not really a limitation, since we don’t have a limit on the number of
arguments (and you can always replace a return argument by an ex-
tra input argument). This might become a limitation in the future.
We made this decision in order to simplify various parts of the code
(VMWClassLoader doesn’t need to generate different return instruc-
tions, the native method doesn’t need to handle return values, etc.).

We have used file names such as VM WClassLoader, VMW XMLParser,
etc. It would be a wise idea to declare a package name for all these
files and avoid having name space collisions.

The config file is actually parsed twice, once in the Java code and once
in the native code. Altough each parser uses different information, it
is possible to parse the file only once.

The class files are also parsed twice. Once by BCEL before patching,
and once by the JVM (VMW(ClassLoader calls defineClass which takes
an array of bytes). This is a negligeable thing.

It would be interesting to be able to reload classes based on real-time
statistics (HotSpot). This could be an interesting future work.

It would be interesting to research how to convert Java code into
VHDL automatically. This can also be an interesting future work.

8 Conclusions and Future work

The main goal of my project has been reached. I am successfuly able
to call coprocessors from Java, without modifying or recompiling the source

code.

The work I did can also be used to call C code from Java (thus

Transparent PLD use from Java 18

simplifying the coding of native libraries for Java). We could imagine that
depending on the hardware available or security policies, a native code or
Java code could be executed.

The overhead of the custom class loader is very negligible compared to
the time gained in the coprocessor. The time required to load my code and
bcel is very little as compared to the time required to load the JVM. The
patching of methods is very fast, and is done only once. Currently the main
problem is in the time required to load the coprocessor, but this time can
be “hidden” by having the processor do something else meanwhile.

This project involved very interesting aspects of Java programming. I
gained detailed insight at the internals of a JVM. I also spent a lot of time
setting up the development environment. This process was time consum-
ing and sometime frustrating, but it clearly highlighted how difficult and
complex open source projects can sometimes be. By using hardware combi-
nations that not a lot of people have tried, we ran into new problems on a
day to day basis.

There are two open questions that I wish I would have had more time to
work on: how to replace a class in the JVM in real-time and how to generate
VHDL from Java bytecode. Both these problems seem complex and could
very well be an entire project on their own, but these are the interesting
problems that will provide new properties to my existing project.

An interesting possiblity I did not cover in this report, is that the co-
processor can call the JVM (by using JNI). We did get this working (by
displaying a “Hello World” back from the coprocessor), but we didn’t ex-
plore the possiblities of such a “reverse” system.

19 Transparent PLD use from Java

9 Appendix

9.1 Code

9.1.1 Organization

Here is the list of files and what they do:

e VMWXMLParser.jj This is the javacc file that will generate the
XML parser. Once compiled by javacc, it will generate the follow-
ing files: VMWXMLParser.java, TokenMgrError.java, ParseExcep-

tion.java, Token.java, SimpleCharStream.java.

¢ VMWClassLoader.java This is the custom class loader that does
all the work.

¢ VMWLauncher.java The launcher used to set the custom class
loader.

¢ VMWUConstants.java File containing all the constants used in the
program.

e ClassldMethodSignature.java This file is just a wrapper.
e IdMethodSignature.java This file is just a wrapper.

e VMW Skel.java Used to generate VMW .class on the fly.

e VMW.class Generated on the fly, never exists as a file.

o VMWcfg.xml User configuration file.

e libJavaVIM.so Native library.

VWMXMLcfg.dtd DTD for config file.

9.1.2 Compiling & Running

Compiling the source code is straight forward, all you need is the bcel
library:

javacc VMWXMLParser.jj

javac -classpath ‘‘bcel-5.1b.jar’’ *.java

To run some code (eg: Hello) using my code:

java -cp ‘‘bcel-5.1b.jar:.’’ VMWLauncher Hello parameters for Hello

© 00 g ORI

=
o

= e
[Cae

14
15
16
17

19
20
21
22

24

26
27

29

31

33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49

51

53

54

55

57

Transparent PLD use from Java

20

9.1.3 VMWXMLParser.jj

Listing 1: VMWXM[LParser.jj

~
*

Created on Jan 14, 2004

Javacc file , to parse the xml config file.

I didn’t implement the entire dtd, only what
interests me. The goal is to be the most
optimized possible.

When parseFile is called (from VMWClassLoader) ,
the static LinkedList config will contain ClassIdMethodSignature
objects .

¥ ¥ ¥ X X ¥ ¥ ¥ %

/%%
% @author Alok Menghrajani
*
«/
options {
STATIC = true;
DEBUGPARSER = false;
}

PARSER BEGIN (VMWXMLParser)

import java.io.FileReader;
import java.util.x;

public class VMWXMLParser {
public static LinkedList config;

/% For testing purpose only =/
public static void main(String args[]) throws Exception {
FileReader in = new FileReader (args[0]);
VMWXMLParser parser = new VMWXMLParser(in) ;
parser . XMLDocument () ;
System.out. println(”0k”);

}

public static void parseFile(String file) throws Exception {

/%
This is the method that will be called from VMWClassLoader.

*/
FileReader in = new FileReader (file);
VMWXMLParser parser = new VMWXMLParser(in) ;
parser . XMLDocument () ;

}

}

PARSER_END (VMWXMLParser)

SKIP : {
” ”» | ” \ T ” | ”»” \t ” | ” \1177
}

TOKEN : {

100
101
102
103
104

106
107
108
109
110
111
112

113
114
115
116

117

21 Transparent PLD use from Java

QUOTE: 7\”” >

XMLS: <LT> 77" >

METHODLISTS: <LT> <METHODLIST> <GT> >
METHODLIST E: <LT> <SLASH> <METHODLIST> <GT> >
METHOD.=SS: <LT> <METHOD> >

METHODE: <METHOD> <GT> >

ID: 7id” >

CLASS: 7class” >

NAME: ”name” >

SIGNATURE: ”signature” >

| < #METHOD: "method” >

| < #METHODLIST: ”methodList” >

| < ANY: "[] >

| < VAL: <QUOTE> (7[”\””])* <QUOTE> >

ANNNNANNANNANNNANNAN

JAVACODE

/* Flush until a ’>>’ is encountered. Useful when you want to
skip a tag that you don’t care about. x/

void flush () {
while ((getNextToken ()).kind != GT)

)

}

String string () : {} {
<VAL> {
String s = token.image;
return s.substring (1, s.length()—1);
}
}

void XMLDocument () throws Exception : {
String cl, n, sig;
short id;

o
{

/* Initialize the Vectors x/
config = new LinkedList();

<XMLS> {flush();} /% skip <?xml version 7> x/
<METHODLIST_S>

(<METHOD S>
<ID><EQUAL>{id=Short . parseShort(string ());}
<CLASS><BEQUAL>{cl=string () ;}
NAME<EQUAL>{n=string () ;}
<SIGNATURE<EQUAL>{sig=string () ;}

{
/* Search to linkedlist to see if I don’t already have this
class */
ListIterator i = config.listIterator (0);
boolean flag = false;

while (i.hasNext()) {
ClassIdMethodSignature cims = (ClassIdMethodSignature) i.next
if (cims.className.equals(cl)) {

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

136

137
138
139
140
141
142
143
144
145
146
147
148

149

151
152

© 0 N O U s W N

[
o

11
12
13
14

15

Transparent PLD use from Java

22

/% Add the id, method and signature only.

(Perform check to see

that this combination of

method /signature doesn’t already exist)

*/

ListIterator

while (j.hasNext()) {
IdMethodSignature ims

if (ims.method.equals(n

Check that method

j = cims.idMethodSignature .

listIterator (0);

(IdMethodSignature) j.next();
) && ims.signature.equals(sig)) {
returns void !

// xml file is bad.

// Warning: I’m not going to check

// for something like this (totally illegal):
// int add(int, int) and

// String add(int, int) (two different

signatures , but

collision

1)

throw new RuntimeException (”Bad XML file”);

}
}

cims.idMethodSignature . add (new IdMethodSignature (id, n, sig)

) k)

flag = true;

}

/* Add the class =/

if (!flag) {
ClassIdMethodSignature cims

cims.idMethodSignature . add (new IdMethodSignature (id, n,

config.add (cims);
}

}
<GT>

= new ClassIdMethodSignature(cl);
sig));

{ while ((getNextToken ()).kind != METHODE); } /% skip what’s under

the <method> tag =/

) *

<METHODLIST_E> <EOF>

9.1.4 VMWClassLoader.java

Listing 2: VMW(ClassLoader.java

/%
* Created on Jan 13, 2004

config file

which performs the following tasks:

in XML, normally (using

using the system loader if the

(classes that contain
the optimized methods by calling

*
% The ’core’ of my project.
* This is a special class loader
*
* — reads XML config file.
*
* — loads classes, that aren’t listed
VMWClassLoader if the
* class can be found, otherwise
class can’t be found
* (should only happen in Kaffe due to a little bug)).
*
* — loads classes specified in
* optimized method) and ’patches’
VMW. run
*

16
17
18

19
20
21
22

23

25
26
27
28

30
31
32

34
35
36

38

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55

57
58
59

61
62
63

65

66
67
68
69
70
71
72
73

23 Transparent PLD use from Java

* — creates special class VWW (native library wrapper),

* adding one run method for each possible signature (by looking in

* the config file). This class is created from ’scratch’ using
VMWSkel .

*

* WIW’s run methods take 2 extra parameters:

* this = a reference to the caller (or null if context is static).

* id = id allowing the native code to find the entry in the config
file .

*®/
/%%

* @author Alok Menghrajani

*/

import java.net.x;
import java.io.x;
import java.util.x;
import org.apache.bcel.x;
import org.apache.bcel.classfile .x;
import org.apache.bcel.generic.x;
public class VMWClassLoader extends URLClassLoader {
static {
if (VMWConstants. debug)
System.out.println (”VMWClassLoader loading ...”);
try {

/% Parse the XML config file. %/

VMWXMLParser. parseFile (VMWConstants. configFile);
System.out.println (”VMWClassLoader ready.”);

} catch (FileNotFoundException e) {
System.out.println ("XML config file "+VMWConstants. configFile +”
not found.”);

System. exit(—1);

} catch (Exception e) {
System.out.println(e.getMessage ());
e.printStackTrace () ;

System. exit(—1);

}

public VMWClassLoader (URL[] wurl) {
super(url);

public Class loadClass(String name) throws ClassNotFoundException {
return loadClass (name, false);

}

public Class loadClass(String name, boolean resolve) throws
ClassNotFoundException {
This method

/

¥ K X K X ¥ X ¥

is called to load a class.

There are 4 possibilities:

1)

2)

The class
—> 1 test
The class
—>1 load

patch

is already loaded

this using findLoadedClass.

is listed in the XML config file
it using myFindClass and then

it using BCEL.

74
75
76
7
78
79

81
82
83
84
85
86
87

89
90
91
92
93
94

96
97
98
99
100

101
102
103
104
105
106
107
108
109
110
111

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

130

131
132

Transparent PLD use from Java

24

*

* X ¥

3) The class to be loaded is WW (java native class)
—> Build it from scratch.

4) The class is a normal/system class
—>1 load it using myFindClass or findSystemClass.

*/

Class result = findLoadedClass (name) ;

if

}

/%
if

}
/%

(result != null) {
/* We are in case 1 — the class is already loaded. x/
if (VMWConstants. debug)

System.out.println(” Already loaded: ” + name);

return result;

Check to see if it’s VWIW x/
(name. equals ("WIW’)) {
if (VMWConstants. debug)
System.out.println(” Create VWWIW’) ;
return createVMW () ;

Check the VMWXMLParser. config LinkedList to see if
it’s a class that needs to be patched =/

ListIterator i = VMWXMLParser. config.listIterator (0);
while (i.hasNext()) {
ClassIdMethodSignature cims = (ClassIdMethodSignature) i.next

}
/%

if (cims.className.equals (name)) {

if (VMWConstants. debug)

System.out.println(” Special class:
byte [] bytes = myFindClass (name) ;
result = patchClass (cims, bytes);
if (resolve) {

resolveClass (result);
}

return result;

}

”»

+ name) ;

We are in case 2 — the class is a system/normal class x/

try {

}
}

priv

/%

byte [] bytes = myFindClass (name);
if (VMWConstants. debug)
System.out. println(”Normal Class: + name) ;
Class ¢l = defineClass (name, bytes, 0, bytes.length);
if (resolve) {
resolveClass (cl);

”

return cl;
catch (Exception e) {
if (VMWConstants. debug)
System.out.println(”System Class: 7 4 name);
return findSystemClass (name) ;

ate byte[] myFindClass(String name) throws
ClassNotFoundException {
Mostly inspired/pasted from Kaffe sources. x/

/% It seems Kaffe imposes a 1024 max file size for class x*/

25 Transparent PLD use from Java

134 URL url = findResource(name.replace(’.", 7/7) + 7 .class”);

135 if (url == null) {

136 throw new ClassNotFoundException (name) ;

137 }

138 try {

139 InputStream in = url.openStream () ;

140 ByteArrayOutputStream out = new ByteArrayOutputStream () ;

141 byte [] buf = new byte[1024];

142 for (int r; (r = in.read(buf)) != —1;) {

143 out.write(buf, 0, r);

144 }

145 in.close();

146 buf = out.toByteArray () ;

147 return buf;

148 } catch (IOException e) {

149 throw new ClassNotFoundException (name + 7: 7 + e);

150 }

151 }

153 private JavaClass createJavaClass (String classname, byte[] bytes) {

154 /* Inspired by BCEL sources. x*/

155 JavaClass clazz = null;

156 try {

157 ClassParser parser = new ClassParser(new ByteArrayInputStream (
bytes), "foo”);

158 clazz = parser.parse();

159 } catch (Throwable e) {

160 e.printStackTrace () ;

161 return null;

162 }

164 ConstantPool c¢p = clazz.getConstantPool();

165 ConstantClass ¢l = (ConstantClass)cp.getConstant (clazz .
getClassNamelndex () , Constants.CONSTANT Class) ;

166 ConstantUtf8 name = (ConstantUtf8)cp.getConstant (cl.getNamelndex
() , Constants.CONSTANT_Utf8) ;

167 name. setBytes (classname .replace(’., 7/7));

168 return clazz;

169 }

171 private Class patchClass (ClassIdMethodSignature cims, byte[] bytes)

172 /* Patches Class cl, so that all invokations of methods

173 * that appear in XML config file are rerouted to VMW.run

174 *

175 * Here are the major steps performed:

176 # 1) Find every method (listed in cims) in Class

177 x 2) Convert signature from String to Type[].

178 % 3) Replace body by a call to WW.run(this (or null),

179 * id , paraml, param2, ...)

180 */

182 JavaClass jc = createJavaClass (cims.className, bytes);

183 ClassGen clazz = new ClassGen(jc);

184 Method methods[] = clazz.getMethods () ;

185 for (int 1=0; i<methods.length; i++4) {

186 /* Search in cims.methodSignature LinkedList for

187 * a match with methods[i].getName() and methods[i].
getSignature () .

188 */

189 ListIterator j = cims.idMethodSignature.listIterator ();

190 while (j.hasNext()) {

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

209
210
211
212
213
214

215

216
217

219
220
221
222
223

225
226
227
228

230
231
232

234
235
236
237
238
239
240
241
242
243

245
246
247
248
249

Transparent PLD use from Java 26

}

IdMethodSignature ims = (IdMethodSignature)j.next();
if (ims.method.equals (methods[i].getName()) &&
ims.signature.equals (methods[i]. getSignature ())) {
/* Set the flag, so we can show a warning if
* a method isn’t present in the class but
% is in the XML config file.
*/
if (ims.flag) {
throw new RuntimeException(” flag already set”);
}
ims. flag = true;
/* Patch this method =/
Method patch = patchMethod(clazz , methods[i], ims.id);
clazz .replaceMethod (methods[i], patch);

}

/% Check the flags x/
ListIterator i = cims.idMethodSignature.listIterator ();
while (i.hasNext()) {

IdMethodSignature ims = (IdMethodSignature) i.next();

if (!ims. flag && VMWConstants. debug) {

System.out.println(”Warning : method 74cims.className+” .”+ims.
method+" {7+
ims.signature+” } not found in class file but used in
config file.”);

}

/* Register new class x/

byte [] output = clazz.getJavaClass ().getBytes ();

Class cl = defineClass (cims.className, output, 0, output.length);
return cl;

private Method patchMethod(ClassGen clazz , Method o, short id) {

/* Replace the body of this method by a call to VWMW.run x*/
ConstantPoolGen cpg = clazz.getConstantPool();
MethodGen mg = new MethodGen(o, clazz.getClassName() , cpg);

/* We will call a run method of VMW that has the same signature.
* We still need to create a new signature, because VMW will take
x a few extra parameters (this, id)

* k)

Type|[] arguments = Type.getArgumentTypes (o.getSignature ());

Type[] newtype = new Type[2+arguments.length];

newtype [0] = Type.OBJECT; // reference to caller

newtype [1] = Type.INT;

for (int 1=0; i<arguments.length;i++) {
newtype[i+2] = arguments[i];

String newsignature = Type.getMethodSignature (Type.VOID, newtype);
if (VMWConstants. debug)
System.out.println ("NEW SIGNATURE="+newsignature) ;

int vmwrun = cpg.addMethodref("WW’ , "run” , newsignature);

if (vmwrun==-1) {
System.out.println(”Fatal error in patchMethod (vmwrun=-—1)");
System. exit(—1);

}

251
252

254
255
256
257
258

260
261
262
263
264
265
266

268

270
271
272
273
274

276
277
278

280
281

283
284
285
286

288
289

301
302
303
304
305
306
307
308
309

311

27

Transparent PLD use from Java

}

/* Start creating new instructions x/
InstructionList il = new InstructionList ();

/* Check if this method is in a static context. x/

/* in static context , var 0 = param 1, var 1 = param 2, etc..
in instance context , var 0 = this, var 1 = param 1, etc...

*/

int first_param;

if (o.isStatic()) {
il . append (new ACONSTNULL());
first_param = 0;

} else {
il . append (new ALOAD(0)) ;
first_param = 1;

}

il .append (new SIPUSH(id));

for (int 1=0; i<arguments.length; i++) {
il .append (new ILOAD(i+first_param));

il .append (new INVOKESTATIC(vmwrun)) ;
il .append (new RETURN()) ;

mg.setInstructionList (il);
mg. removeLineNumbers () ;

mg. setMaxStack () ;

return mg. getMethod () ;

private Class createVMW () {

/* Create VWWW Class using VMWsSkel =/
ClassGen clazz = new ClassGen(Repository .lookupClass (”VMWSkel”)) ;
clazz .setClassName ("VWWMW’) ;

ConstantPoolGen cpg = clazz.getConstantPool();
InstructionFactory factory = new InstructionFactory(clazz, cpg);

InstructionList il = new InstructionList ();
/% Create a method declaration for each possible signature =/
LinkedList signatures = new LinkedList();
ListIterator i = VMWXMLParser. config.listIterator (0);
while (i.hasNext()) {
ClassIdMethodSignature cims = (ClassIdMethodSignature) i.next();
ListIterator j = cims.idMethodSignature.listIterator (0);
while (j.hasNext()) {
IdMethodSignature ims = (IdMethodSignature) j.next();
/% Check to see if we haven’t already handled this signature
*
/
if (!signatures.contains (ims.signature)) {
signatures .add (ims.signature);
Type [] arguments = Type.getArgumentTypes (ims.signature);
Type [] newtype = new Type[2+arguments.length];
newtype [0] = Type.OBJECT; // reference to caller
newtype [1] = Type.INT; // id
for (int k=0; k<arguments.length; k++) {
newtype [k+2] = arguments [k];

String [] strings = new String[newtype.length];

312
313
314
315
316
317

319

320

322
323
324
325

327
328
329

330
331
332

W N e

w0 3 O »

10

Transparent PLD use from Java

28

for (int k = 0; k<strings.length; k++) {
strings [k] = 7arg”’+k;

/* We can assume the return type is void x/
if (VMWConstants. debug)
System.out.println (?ADDING: ” 4 ims.signature);

MethodGen mg = new MethodGen (Constants . ACC_PUBLIC |
Constants . ACCSTATIC | Constants .ACCNATIVE, Type.VOID,
newtype , strings , 7"run” , "WW’ | il , cpg);

clazz .addMethod (mg. getMethod ()) ;

}
}
}

/* Register new class x/

byte [] output = clazz.getJavaClass ().getBytes ();

Class cl = defineClass (clazz.getClassName() , output, 0, output.
length);

return cl;

9.1.5 VMWLauncher.java

Listing 3: VMWLauncher.java

/%

* ¥ %

* ¥ ¥ %

*

*®/
/%%

*

*/

Created on Jan 13, 2004

This is a wrapper to launch Java applications (name passed in arg
[0]) -

The goal is the have AlokClassLoader load the classes for this

Application.

The remaining arguments will be passed to the main Java applicatio

@author Alok Menghrajani

17 import java.lang.reflect .x;
import java.net.x;

18

25
26

28
29

public class VMWLauncher {

public static void main(String args|[]){

if (args.length==0) {

n

System.out.println(”Usage: java AlokLauncher appName extraargs”)

System. exit(—1);

}

// Check to see if there are any arguments to be
// passed to the main Java app.

30

32
33
34
35
36
37

39
40

42
43
44
45
46
47
48

49
50
51
52

54
55

57
58
59
60

62
63
64

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

N

29

Transparent PLD use from Java

String args2[] = new String [0];

if (args.length>1) {

}

args2 = new String|[args.length —1];
for (int i=1; i<args.length; i++) {
args2[i—1] = args[i];

// Recover current search path for custom class loader.
ClassLoader cl = Thread.currentThread ().getContextClassLoader () ;

URL urls[] = ((URLClassLoader) cl).getURLs();
if (urls.length == 0) {

urls = new URL[1];
try {
urls [0] = new URL(VMWConstants. kaffebug) ;
} catch (MalformedURLException e) {
System.out.println(”Malformed filename in VMWConstants (String
kaffebug)”);
System. exit(—1);

VMWClassLoader customLoader=new VMWClassLoader(urls);

try {

}

Class mainClass = customLoader.loadClass (args[0]) ;

// Check using reflection that main Java
// app has a function main(String [])
Class parameters [] = new Class[1];
parameters [0] = String []. class;

Method method = mainClass. getMethod ("main” , parameters);
Object [] arguments = new Object [1];
arguments [0]=args2;

method . invoke (null , arguments);

catch (ClassNotFoundException e) {

// The requested main Java app wasn’t found.

System.out. println(”The class "4args[0]4+” was not found.”);
System. exit(—1);

catch (NoSuchMethodException e) {

// Reflection didn’t find main function.

System.out.println(” It seems "4args[0]+” doesn’t have a main.”);
System. exit(—1);
catch (Exception e) {
System.out.println(e.getMessage());
e.printStackTrace ()

)

9.1.6 VMWUConstants.java

Listing 4: VMWConstants.java

public

class VMWConstants {

/% path to config file x/
public static final String configFile = 7 /etc/VMWcfg. xml” ;

11
12
13

14
15

© 00 N U As W N

U W N =

Transparent PLD use from Java 30
/* name of WIW library file x/
/* on linux the name will be automatically converted to ”lib”+
libFile+”.s0”
and on windows the name will be libFile+7.d117 %/
public static final String libFile = "JavaVMW?” ;
/% solve a little bug in Kaffe x/
public static final String kaffebug = 7 file:///”;
// public static final String kaffebug = ” file:///home/menghraj

/undergrad/epfl_4 /sem_proj_epxa /vmw/”;
public static final boolean debug = true;

9.1.7 ClassldMethodSignature.java

Listing 5: ClassIdMethodSignature.java

~
*

* X X K ¥ ¥ ¥ ¥ x

/

Created on Jan 15, 2004

Class to encapusulate a String (representing a class) and

a LinkedList of IdMethodSignatures (which itself
encapsulate two Strings and an int).

is a Class to

I have just proven how intrusive Java can sometimes become.

/%%

*

@author Alok Menghrajani

*/

import java.util.x;

public class ClassIdMethodSignature {

public String className;
public LinkedList idMethodSignature ;

public ClassIdMethodSignature(String c¢) {
this.className = c;
this.idMethodSignature = new LinkedList();

9.1.8 IdMethodSignature.java

Listing 6: IdMethodSignature.java

¥ ¥ ¥ ¥ ¥

Created on Jan 15, 2004

Class to encapusulate two Strings (the first representing a method,

the second representing a signature) and an int
id in the code).

(representing the

31 Transparent PLD use from Java

6 + This int is used for optimization (don’t need to pass Strings to
the native library).

8 x I wish there was a way to avoid the creation of such silly classes

9

10 */

12 /%

13 % @author Alok Menghrajani
14 *

15/

17 public class IdMethodSignature {

19 public String method;

20 public String signature;

21 public short id;

22 public boolean flag;

23 /* This flag is used to display a warning if

24 * a method is specified in the XML config file but not found
25 * in the actual class.

26 */

28 public IdMethodSignature (short id, String m, String s) {
29 this .method = m;

30 this.signature = s;

31 this.id = id;

32 this.flag = false;
33 }

34 }

9.1.9 VMWSkel.java

Listing 7: VMWSkel.java

1 /%

2 % Created on Jan 15, 2004

3k

4 % Skeleton Class to build VMW. class .

5 x I could do things without this class, but it’s easier this
6 =+ way (and it is more flexible since changing this class is easy).
7%

8 x/

10 /%

11 % @author Alok Menghrajani

12 x/

14 public class VMWSkel {

15 static {
16 System.loadLibrary (VMWConstants. libFile) ;
17 }

18 }

9.1.10 VMWocfg.xml

Transparent PLD use from Java

32

Listing 8: VMWcfg.xml

1 <?xml version="1.077>

2 <methodList>

3 <method id="1" class=" AnotherClass” name="patchHim”
[$)V'>

4 <map>test .sni</map>

5 <methods maxid="4">

6 <lookupInfo id="1">

7 <kind>instance </kind>

8 <class>java/lang/String </class>

9 <name>< ; init ></name>

10 <signature >()V</signature>

11 </lookupInfo>

12 <lookupInfo id="2">

13 <kind>static </kind>

14 <class>java/lang/System</class>

15 <name>gc</name>

16 <signature >()V</signature>

17 </lookupInfo>

18 <lookupInfo id="3">

19 <kind>instance </kind>

20 <class>java/io/PrintStream </class>
21 <name>println </name>

22 <signature >()V</signature>

23 </lookupInfo>

24 <lookupInfo id="4">

25 <kind>instance </kind>

26 <class>java/io/PrintStream </class >
27 <name>println </name>

28 <signature >(Ljava/lang/String ;)V</signature>
29 </lookupInfo>

30 </methods>
31 <fields maxid="1">

32 <lookupInfo id="1">

33 <kind>static </kind>

34 <class>java/lang/System</class>

35 <name>out </name>

36 <signature>Ljava/io/PrintStream;</signature>
37 </lookupInfo>

38 </fields>
39 </method>

41 </methodList>

signature=" ([S[S

9.1.11 VMWXMLcfg.dtd

Listing 9: VMWcfg.dtd

/*
% Created on Jan 14, 2004

*/
/%%

* @author Alok Menghrajani
*
*/

11 <!ELEMENT methodList (methodx*)>

[NV SR

© 0 N O

12
13
14
15
16
17
18
19
20

22
23
24
25
26
27
28
29

10
11
12

14
15
16
17

19
20

22
23
24
25
26

28
29
30
31
32
33

34
35

33 Transparent PLD use from Java

<!ELEMENT method (map, methodsx, fields*)>
<!ELEMENT map (#PCDATA)>

<!ELEMENT methods (lookupInfo+)>

<!ELEMENT fields (lookupInfo+)>

<!ELEMENT lookupInfo (kind, class , name, signature)>
<!ELEMENT kind (#PCDATA)>

<!ELEMENT class (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT signature (#PCDATA)>

<!ATTLIST method
id CDATA #REQUIRED

class CDATA #REQUIRED

name CDATA #REQUIRED

signature CDATA #REQUIRED>
<IATTLIST methods maxid CDATA #REQUIRED>
<!ATTLIST fields maxid CDATA #REQUIRED>
<!ATTLIST lookupInfo id CDATA #REQUIRED>

9.1.12 IdeaPlus.java

Listing 10: IdeaPlus.java

public class IdeaPlus {

/* Number of IDEA rounds =x/
private static final short IDEA_ROUNDS = 8§;

/* Number of IDEA subkeys x/

public static final short IDEASKNUM = (6 x IDEA_ROUNDS + 4);

/* low significant 16—bit =/
private static short lswl6(int y){
return (short)(y & Oxffff);

/* most significant 16—bit =/
private static short mswl6(int y){
return (short) ((y>>16) & 0xffff);

/% 2%%16 + 1 x/
private static final int MULMOD = (1<<16) | 1;

// Multiplication modulo 2x%16 + 1
private static short mul(short x, short y)
{

short t16;

int t32;

x = lswl6(x—1);

t16 = Iswl6(y — 1);

t32 = (int) ((char)x = (char)tl6 4 (char)x + (char)tl6 + 1);
x = lswl6(t32);

t16 = mswl6(t32);

X = (.short)(((char)x — (char)t16) + (((char)x)<=((char)tl6) ? 1

)
return x;

}

0)

38
39
40
41
42
43
44

46
47

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

68
69
70
71
72

74
75

7
78

79
80

82
83
84
85
86
87
88
89
90

92
93
94
95

97

Transparent PLD use from Java

34

// Compute multiplicative inverse of x by Euclid’s GCD algorithm .

private static short mul_inv(short x)
{

int nl = MULMOD;

int n2 = (int) (char)x;

int bl = 0;

int b2 = 1;

int q, r, t;

if ((char)x<=1)

return x;

while (true) {
r = nl % n2;
q =nl / n2;
if (r==0) {
if (b2<0)
b2 += MULMOD:;
return lswl6(b2);

}
else {
nl = n2;
n2 = r;
t = b2;
b2 = bl—(q*b2);
bl = t;
}
}
}

// Computes IDEA encryption subkeys.
public static void idea_encrypt_subkeys
(short [] key, short[] subkeys)

{

int i;

for (i=0;i<key.length;i++)
subkeys [i] = key[i];

for (;i<IDEASKNUM; i++)

subkeys [i] = lsw16 (((char) (subkeys[((i4+1) % 0x8)!=0 7 i—7 :

—15]) << 9) |

((char) (subkeys [((i4+2) % 0x8) < 2 7 i—14 : i—-6]) >>7));

}

// Computes IDEA decryption subkeys from encryption subkeys.

public static void idea_decrypt_subkeys
(short [] encrypt_subkeys, short[] decrypt_subkeys)

int pen = 0;

int pde = 0;

short [] t = new short[encrypt_subkeys.length];

int pt = 0;

int i;

t [6 * IDEA ROUNDS] = mul_inv (encrypt_subkeys|[pen++]);
t[6 * IDEAROUNDS + 1] = lswl6(—encrypt_subkeys|[pen++])
t [6 * IDEA ROUNDS + 2] = Iswl6(—encrypt_subkeys|[pen++])
t [6 * IDEAROUNDS + 3] = mul.inv(encrypt_subkeys|[pen++]

for (i=6x(IDEAROUNDS-1);i>=0;i—=6) {

)

)

35 Transparent PLD use from Java

98 t[i + 4] = encrypt_subkeys[pen++];

99 t[i 4+ 5] = encrypt-subkeys|[pen++];

100 t[i] = mul.inv(encrypt_subkeys[pen++]);
101 it (i!=0) {

102 t[i + 2] = lswl6(—encrypt-subkeys[pen++]);
103 t[i + 1] = lswl6(—encrypt_subkeys|[pen++]);
104

105 else {

106 t[1] = lswl6(—encrypt-subkeys|[pen++]);

107 t[2] = lswl6(—encrypt_subkeys|[pen++]);

108

109 t[i + 3] = mul.inv(encrypt_subkeys[pen++]);
110

112 for (i=0;i<IDEASKNUM;i++) {

113 decrypt_subkeys[pde++] = t[pt];

114 t[pt++] = 0;

115

116 }

119 //IDEA encryption/decryption algorithm .

120 // Note: block_in and block_out can be the same block.
121 public static void idea_cipher

122 (short [] block_-in, short[] block_out, short[] key)
123

124 int pin = 0;

125 int pout = 0;

126 int pk = 0;

127 short wordl, word2, word3, word4;

128 short t1, t2;

129 int i;

131 wordl = block_in [pin++];

132 word2 = block_in [pin++];

133 word3 = block_in [pin++];
]

134 word4 block_in [pin++];

136 for (i=IDEA_ROUNDS;i>0;i——) {

137 wordl = mul(wordl , key [pk++]);

138 word2 = lswl6 ((char)word2 + (char)key[pk++]);
139 word3 = Iswl6 ((char)word3 + (char)key[pk++]);
140 word4 = mul(word4 , key [pk++]);

142 t2 = (short) (wordl "~ word3);

143 t2 = mul(t2, key [pk++]);

144 t1 = Iswl6 ((char)t2 + (char)(word2 " word4));
145 t1 = mul(t1,key [pk++]);

146 t2 = Iswl6 ((char)tl + (char)t2);

148 wordl "= t1;

149 word4d "= t2;

151 t2 "= word2;

152 word2 = (short)(word3 " tl1);

153 word3 = t2;

154 //System.out.println(”Round "4+i+” :”4+ Integer.toHexString ((char)

wordl)+4” 7+ Integer.toHexString ((char)word2)+” 7+ 1Integer .
toHexString ((char)word3)+” "+ Integer . toHexString ((char)word4

)

155

157
158
159

161

162

163

164

166

© 0 N O

11
12
13
14

16
17
18

20
21
22
23
24
25
26
27

29
30
31
32
33

35
36
37
38
39

41
42

Transparent PLD use from Java 36

wordl = mul(wordl , key [pk++]);

block_out [pout++] = wordl;

block_out [pout++] = lswl16 ((char)word3 + (char)key[pk++]);

block_out [pout++] = lswl6 ((char)word2 + (char)key[pk++]);

word4 = mul(word4 , key [pk]) ;

block_out [pout] = word4;

//System.out. println (”Round 0:”+ Integer.toHexString ((char)wordl)
+” ?+Integer . toHexString ((char)word2)+” "+Integer . toHexString ((
char)word3)+” ?+Integer . toHexString ((char)word4)) ;

}
}

9.1.13 IdeaTestSw.java

Listing 11: IdeaTestSw.java

public class IdeaTestSw {

public static void main(String [] args)

{

if (args.length < 1) {
System.out.println(”Usage: java IdeaTestSw <integer >");
return;

}

int i,j;

int fd;

int data_.in;
int data_out;

int [] param = new int [4];
int [] obj0 = new int [2];
int n, n64;

try {

n64 = (new Integer (args[0])).intValue();

catch (NumberFormatException nfs) {
System.out.println(”You must provide an integer”);

return;
}
n = n64x*2;
short [][] key = new short [3][8];
short [] enkey = new short[IdeaPlus.IDEASKNUM];
short [] dekey = new short[IdeaPlus.IDEASKNUM];
short [][] rdata = new short[n64][4];
short [][] rdata_out = new short[n64][4];
/%

IDEA reference code

*/

for (i=0; i<8; i++)
key [0][i] = (short)(i+1);

37 Transparent PLD use from Java

44 for (1i=0; i<8; i++)
45 System.out.print ((Integer.toHexString(key [0][i]))+ 7);

47 /* Test with only one key =/

48 IdeaPlus.idea_encrypt_subkeys (key [0] , enkey);

49 System.out. println();

50 for (i=0; i<8; i++)

51 System.out.print ((Integer.toHexString ((char)enkey[i]))+" 7);
52 IdeaPlus.idea_decrypt_subkeys (enkey ,dekey) ;

53 System.out.println();

54 for (i=0; i<8; i++)

55 System.out.print ((Integer.toHexString ((char)dekey[i]))+ 7);

57 System.out.println();
58 System.out.println(”Input blocks:”);
59 for (j = 0; j < n64; j++) {

60 for (i=0; i<4; i++) {

61 rdata[j][i]= 0;//(short)(j*10 + 1i);

62 System.out.print ((Integer.toHexString ((char)rdata[j][i]))+ \t7);
63

64 System.out.println();

65 }

67 /* Encryption starts =/

68 /xif ((fd = open(”/dev/fpga” ,ORDONLY)) == —1)
69 {

70 printf(”Can’t open fpga”);

71 exit (1) ;

72 }x/

74 /xif (ioctl(fd,FPGA_TIMER.INIT,1) != 1)

75 {

76 printf(” Error initalizing timer...\n”);

7 return 1;

78 }x/

80 for (j = 0; j < n64; j++) {

81 IdeaPlus.idea_cipher(rdata[j], rdata_out[j], enkey);
82 }

83 System.out.println();
84 System.out.println(”Output blocks:”);
85 for (j = 0; j < n64; j++) {

86 for (i=0; i<4; i++)

87 System.out.print ((Integer.toHexString ((char)rdata_out[j][i]))+ \t”
)

88 System.out. println () ;

89 }

91 /xif (ioctl(fd ,FPGA_TIMERSTOP,1) != 1)

92

93 printf(” Error stoping timer...\n”);

94 return 1;

95 }/

96 System.out.println(” This is the SW time measured for encryption of 7

4+n644” 64—bit blocks”);
98 /* Encryption ends x/

100 /%
101

102 IDEA reference code END
103

Transparent PLD use from Java 38

104 */
106 }

108 }

9.2 Bibliography
References

[1] Joshua Engel, Programming for the Java Virtual Machine, Addison Wes-
ley, second edition, 1999.

[2] Java API, http://java.sun.com/j2se/1.4.2/docs/api/
[3] BCEL API, hitp://jakarta.apache.org/beel/apidocs/index.html
[4] BCEL browsable source, http://jakarta.apache.org/beel/zref/index.html

[5] Miljan Vultic, Ludovic Righetti, Laura Pozzi, Paolo Ienne, Portable Re-
configurable Coprocessors through Interface Virtualization, EPFL.

[6] Ludovic Righetti, Miljan Vuletic, Operating System Support for Recon-
figurable System on Chip, EPFL semester project, 2003.

[7] Christophe Dubach, Miljan Vuletic, Java Virtual Machine on FPGA
based platforms, 2004.

