
Laboratoire d'Architecture des Processeurs - EPFL
Systèmes Embarqués en temps réels

RokEPXA based Cyclope Robot

Joel Dumas
Alok Menghrajani

February 2004

sensor

bumper

JTAG

serial port

power cable

1.Introduction

The goal of our project is to design a robot that will move around in a maze. We used
Cyclope, a RokEPXA based robot developed at the LAP. The RokEPXA board has an
interesting hybrid architecture: a programmable FPGA is used to control the robot 's
fundamental functions (eg sending signals to the motors) while an ARM based
general purpose processor is used to program the robot's higher level beahviour
(artificial intelligence).

At the end of the project, we tested our robot in a «mini competition», involving
Cyclope robots designed by other fellow students. The goal of the competition was to
fully explore a maze; and do something (like flash leds or «dance») once the maze
was fully explored. The goal was also to explore the maze as quickly as possible. The
starting position could be choosen as wanted.

2.The Robot's Anatomy

The Cyclope has the following anatomy:
– 2 wheels, each controlled by a motor. By spining the motors in opposite direction,

it is possible to have the robot turn around itself. We can control the duration of
the current sent to the motor (enabling us to control the mean tension using only 1
bit)We can also control the direction (forward / reverse).

– 8 infrared sensors, used to estimate the distance to the nearest obstacle.
– 2 optical devices placed one on each wheel, and used to track the rotation of the

wheel. This is very useful, since this provides a good estimate of the distance
travelled by the robot.

– Several touch sensors (that can be used to detect a collision with a wall, we didn't
use them).

– 4 leds that can be used to display whatever we want (useful for debugging
purpose).

We used Quartus to do the hardware and software development. We designed the
hardware in VHDL, while we wrote the software in C. The robot is programmed using
the parallel port (JTAG). The robot can display information via the serial port or on
the 8 leds.

3.Hardware Implementation

We implemented the bare minimum in hardware. That is:
– Motor Controller

(See pwm.vhd).
We used pulse width modulation (PWM) to control the speed of the wheels. The
motors use DC, but we can only put VCC or 0[V] on the lines. The trick is that
using a pulse, the ratio between «high» and «low» times simulates intermediary
tensions, thus the wheels are spining faster or slower. The overall period is fixed
(215 clock ticks, at 24 Mhz), and the duty cycle and motor direction are set through
a register made available on the avalon bus. (See Figure 1.1).
The pwm module is instantiated twice, once for each wheel.

Figure 1.1 – PWM
– Odometer

(See discrvit.vhd)
The odometer receives two signals that allow us to know in which direction and
how fast the wheel is spining (these signals are Gray codes, which means that at
most one of them changes at any given time). The input signals are asynchronus,
so we first use two levels of flip- flops to synchronize them (the more levels we
use, the less chances we have of getting meta - stable. But this also increases the
delay between the change of a signal and the response from the system.). We then
use a state machine to increment or decrement the distance counter. We also use a
timer to calculate the «curent speed», but it turned out that we never used this
value.
The distance and speed can be read by the software in two registers, available
through the Avalon bus. One can also write in the distance register, which provides
a handy way of resetting it. (See Figure 1.2).

Figure 1.2 – Discrvit
– IR Sensors

The IR sensors are connected to an A/D converter, which we can command
through a SPI bus. This is controlled by the software, no extra control hardware
was added. We also used two signals that control the LEDs and which sensor is
curently connected to the A/D converter.. Each sensor has a LED and reads the
amount of light that bouncs back from the walls. In order to eliminate ambient
light, we perform each reading twice, once with the LED on and once without, and
compute the difference.

4.A Little Maze Theory

There are different types of mazes, each having different properties. We knew that
the maze would have the following properties:
– 2D (no steps or ramps)
– orthogonal grid based (walls are the same length and are either horizontal or

vertical)
– closed 5x5 maze
– can have inaccessible areas
– each cell has at least one wall (which means: there can't be any 4- way junction)

input signal

11

01

00

10

inc

dec

inc

incinc

dec
dec

dec

state machine

duty cycle

periode

5.Software Implementation

The first part of the software design was to get the robot moving properly
(movement primitives). The sensors return values that grow exponentially (not
exactly since there is a saturation point, but you get the idea) as the walls get closer.
Instead of trying to determine the exact curve, we just used reference values. Our
motor and odometer don't use the same units of mesure, so we also used reference
values to calibrate them. Since we wanted high precision, we always used the motors
at half speed (we could have increased the speed once everything worked, but we
didn't get enough time).
We always performed 3 readings on the sensors, and took the mean. This way, we
had more stable readings.
We didn' t need to calibrate the two wheels (by reading the odometer after setting
their speeds). Some student had to do this (and some even implemented hardware
solutions). We were probably lucky to have exactly the same motors on our robot
(and even if it is not exactly the case, small errors can be corrected by our «move
forward» algorithm, see below).

– We wrote a function move_forward which will move the robot until it reaches the
next intersection (either missing walls on the sides or a wall in front, it could be
just a corner). This way, whenever the robot stops, we have reference points
(either an empty space on the sides or a wall in front) to reposition ourselves and
calculate how many cells we have covered.Since we recalibrate the robot each time,
the precision is good enough. We also use the left and right walls to stay in the
center of the alleys (we use linear recalibration, so if the robot gets too close to a
wall it will immediatly correct itself, while still performing small corrections when
near the center).
One of the problems we ran into was the robot starting to recalibrate itself just
before the end of a wall (and then losing it's direction). Linear recalibration fixed
this problem, as by the end of a wall, the robot should always be in the center of
the cell.
Note: we also took special consideration to detect the absence of walls on the
sides, as this can happen when the robot starts to move (during the first half- cell).

– We used three different funtions to turn left, right and 180°. We used three
seperate functions so we could calibrate them individually. We also noticed that
the U- turn required a slightly larger value (probably because of the way the
processor reads the odometer value in a loop).

For navigating the maze, we wrote two algorithms:
– follow the left wall:

It is very simple, but it doesn' t guarantee that all cells will be visited (it can loop
arround islands) and it can't tell when it is done.

– a more complex algorithm:
The idea is to map the maze and go to unvisited cells until none are remaining.
The C structure used to represent the maze was a 2*size_x+1 by 2*size_y+1 array
of char. The (odd, odd) indexes represent cells. The (even, even) indexes are
ignored. The (odd, even) and (even, odd) indexes represent walls. (See Figure 1.3).

Figure 1.3 – Internal maze representation

The walls can be in 3 states: unknown, set or clear. The cells can be in 4 states:
unvisited, visited, inaccessible, accessible. The difference between accessible and
unvisited is that the path to get to an accessible cell is known, whereas the path to
an unvisited cell is unknown - it could even not exist (accessible cells are
neighbours to visited or accesible cells, whose seperating wall is marked as clear).
Before taking a move decision, we first perform graph analysis:
– Any cells that has 3 walls marked clear has the 4 th wall marked set.
– Every cell that is unvisited is marked as inaccessible.
– Every cell that is a neighbour of a visited or accessible cell and has the wall set

to clear is marked as accessible.
– Every cell that is a neighbour of an accessible cell but who's wall state is

unknown is marked as unvisited.
– The remaining cells are marked as inaccessible.

After this analysis is done, the best accessible cells are searched for (See Figure
1.4), taking into account distance and number of surrounding walls (we want to
first visit dead ends). Once this cell is found (it's path is determined at the same
time), the robot is instructed to rotate and move forward (the robot doesn't
actually go to the chosen cell, it simply moves towards it and recomputes
everything, enabling it to change it's decision about which cell to visit if it finds a
better one on its way.

As the robot moves, the information its sensors receive are used to mark the
map's walls. Our algorithm is able to detect when the robot is lost (if it wants to
change the state of a wall in an incoherent way). When this happens, we fall back
to the simpler «follow the left wall» algorithm.

One of the requirements of this algorithm is to know the starting position and
orientation. This can be changed by defining a larger grid, but then the robot will
take less optimal decisions (it's a trade - off).

6.Conclusion

Unfortunately we had a lot of problems the day of the contest, including: an
odometer that stopped to work (due to a connection that broke), the sensors
reported different values than during our preparation, most notably the front sensor
(we had to quickly hack a fix for this). Even though we didn't have enough time to
solve all these last - minute problems, our robot performed remarkably well, being 1
second short from the 1st place in the first maze, and missing only one cell in the
second (which only one robot managed to explore entirely). But what we are most
proud of, is the way it's moving: it's very accurate, and it always stays in the middle
of the cells.

Had we got more time, we would have improved the following:
– Write some code to test the routing algorithm (we did all our tests by running our

code on the robot which isn't always the best way to develop, because the «write -
test - fix» process is slow (it takes about 1 minute to compile the code, few seconds
to transfer it to the robot, another few seconds to test and the output the robot
can give is very limited).

– Dynamic calibration based on current environment. This is something very easy to
do, and very helpful, if not mandatory (we did by hand).

– Hardware self - test (we had so many problems that this would definitely be useful).
– We could improve the routing algorithm by moving along walls whenever possible

(when the robot has lateral walls it makes much less mistakes).
– I wish we could have worked on camera based navigation (which would provide us

with a whole new set of challenges but would enable us to have a much better
robot, as we could discover larger parts of the maze at a time).

– Better error recovery. Right now we simply fallback to the follow the left wall
algorithm, we could do something better.

– One problem with our current way of doing rotations, is that we don't have any
reference points. So performing several rotations in a row can be a problem. It is
very difficult to perform good rotations without losing too much time. We tried
some different solutions, and we think the only solution would be to have an
external sensor (compass or cheap gyroscope). This would really increase the
reliability.

Figure 1.4 – How the algorithm finds the
shortes t path by value propagation.

0 1 0 1

2 2

1 0 1 2

3 3

2 3 2 3

1 0 1 2

3 4 3 4

2 3 2 3

1 0 1 2

iteration 0 iteration 1

iteration 2 iteration 3

iteration 4

7.VHDL source
pwm.vhd

library ieee;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity pwm is

 port (

 signal clk : in std_logic;

 signal reset : in std_logic;

 -- Avalon bus interface

 signal chipselect : in std_logic;

 signal address : in std_logic_vector(1 downto 0);

 signal read : in std_logic;

 signal write : in std_logic;

 signal readdata : out std_logic_vector(15 downto 0);

 signal writedata : in std_logic_vector(15 downto 0);

 -- PWM channel output

 signal pwm_pulse : out std_logic;

 signal pwm_dir : out std_logic

);

end pwm;

architecture synth of pwm is

signal speed, timer: std_logic_vector(14 downto 0);

begin

process (chipselect, write, reset)

begin

if reset = '1' then

pwm_dir <= '0'; speed <= (others => '0');

elsif clk'event and clk = '1' then

if chipselect = '1' and write = '1' then

if address = "00" then

speed <= writedata(14 downto 0);

pwm_dir <= writedata(15);

end if;

end if;

end if;

end process;

process(clk, reset)

begin

if reset = '1' then

timer <= (others => '0');

elsif clk'event and clk = '1' then

timer <= timer + (14 => '1', 13 downto 0 => '0');

end if;

end process;

process (chipselect, write, timer, speed, reset)

begin

if clk'event and clk = '1' then

if chipselect = '1' and write = '1' then

if timer >= writedata(14 downto 0) then

pwm_pulse <= '0';

else

pwm_pulse <= '1';

end if;

else

if (reset = '1') or (timer = (14 downto 0 => '0')) then

pwm_pulse <= '1';

end if;

if timer = speed then

pwm_pulse <= '0';

end if;

end if;

end if;

end process;

end synth;

discvit.vhd

library ieee;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity DiscrVit is

 port(

 clk, reset: in std_logic;

 chipselect, read, write: in std_logic;

 address: in std_logic_vector(1 downto 0);

 readdata: out std_logic_vector(15 downto 0);

 writedata: in std_logic_vector(15 downto 0);

 RamboA1, RamboA2, RamboB1, RamboB2: in std_logic);

end DiscrVit;

architecture synth of DiscrVit is

 signal state1, state2, nextState1, nextState2: std_logic_vector(1 downto 0);

 signal add1, add2: std_logic_vector(15 downto 0);

 signal timer: std_logic_vector(19 downto 0);

 signal v1, v2: std_logic_vector(15 downto 0);

 signal vitesse1, vitesse2, dist1, dist2: std_logic_vector(15 downto 0);

 signal ta1, ta2, tb1, tb2: std_logic;

 signal odol_a, odol_b, odor_a, odor_b: std_logic;

begin

 process (clk)

 begin

 if clk'event and clk = '1' then

 ta1 <= RamboA1; ta2 <= RamboA2;

 tb1 <= RamboB1; tb2 <= RamboB2;

 odol_a <= ta1; odol_b <= tb1;

 odor_a <= ta2; odor_b <= tb2;

 end if;

 end process;

 process (odol_a, odol_b, state1)

 begin

 nextState1 <= odol_a & odol_b;

 add1 <= (others => '0');

 case state1 is

 when "00" =>

 if nextState1 = "01" then add1 <= (others => '1');

 elsif nextState1 = "10" then add1 <= (0 => '1', others => '0');

 end if;

 when "01" =>

 if nextState1 = "11" then add1 <= (others => '1');

 elsif nextState1 = "00" then add1 <= (0 => '1', others => '0');

 end if;

 when "10" =>

 if nextState1 = "00" then add1 <= (others => '1');

 elsif nextState1 = "11" then add1 <= (0 => '1', others => '0');

 end if;

 when "11" =>

 if nextState1 = "10" then add1 <= (others => '1');

 elsif nextState1 = "01" then add1 <= (0 => '1', others => '0');

 end if;

 when others => null;

 end case;

 end process;

 process (odor_a, odor_b, state2)

 begin

 nextState2 <= odor_a & odor_b;

 add2 <= (others => '0');

 case state2 is

 when "00" =>

 if nextState2 = "01" then add2 <= (others => '1');

 elsif nextState2 = "10" then add2 <= (0 => '1', others => '0');

 end if;

 when "01" =>

 if nextState2 = "11" then add2 <= (others => '1');

 elsif nextState2 = "00" then add2 <= (0 => '1', others => '0');

 end if;

 when "10" =>

 if nextState2 = "00" then add2 <= (others => '1');

 elsif nextState2 = "11" then add2 <= (0 => '1', others => '0');

 end if;

 when "11" =>

 if nextState2 = "10" then add2 <= (others => '1');

 elsif nextState2 = "01" then add2 <= (0 => '1', others => '0');

 end if;

 when others => null;

 end case;

 end process;

 process (reset, write, clk)

 begin

 if reset = '1' then

 v1 <= (others => '0'); v2 <= (others => '0');

 dist1 <= (others => '0'); dist2 <= (others => '0');

 timer <= (others => '0');

 else

 if clk = '1' and clk'event then

 dist1 <= dist1 + add1;

 dist2 <= dist2 + add2;

 if (chipselect and write) = '1' then

 if address = "00" then

 dist1 <= writedata;

 elsif address = "10" then

 dist2 <= writedata;

 end if;

 end if;

 timer <= timer + (19 => '1', 18 downto 0 => '0');

 if timer = (19 downto 0 => '0') then

 vitesse1 <= v1; vitesse2 <= v2;

 v1 <= (others => '0'); v2 <= (others => '0');

 else

 v1 <= v1 + add1; v2 <= v2 + add2;

 end if;

 end if;

 end if;

 end process;

 process (clk)

 begin

 if clk = '1' and clk'event then

 state1 <= nextState1;

 state2 <= nextState2;

 end if;

 end process;

 process (chipselect, read, reset)

 begin

 if (chipselect and read) = '1' then

 if address = "00" then

 readdata <= dist1;

 elsif address = "01" then

 readdata <= vitesse1;

 elsif address = "10" then

 readdata <= dist2;

 else

 readdata <= vitesse2;

 end if;

 end if;

 end process;

end synth;

8.C source

One of the reasons this source code is ugly is because we coded it in a single
evening...

main.c
#include <stdio.h>
#include "ARM_Stripe_sdk\inc\excalibur.h"
#include "spi.h"
#include "max1202.h"
#include "spi_max1202.h"
#include "excalibur.h"
#include "led.h"

typedef unsigned int uint;

/* my macros */
#define GET_SPEED(x) ((int)(short)((int*)na_user_Vitesse)[2*(x)+1])
#define GET_SPEED_L GET_SPEED(0)
#define GET_SPEED_R GET_SPEED(1)
#define SET_SPEED_L(v) (*(short*)na_user_pwm_left = (v));
#define SET_SPEED_R(v) (*(short*)na_user_pwm_right = (v));

#define GET_DIST(x) ((int)(short)((int*)na_user_Vitesse)[2*(x)])
#define GET_DIST_L GET_DIST(0)

#define GET_DIST_R GET_DIST(1)
#define RESET_DIST {((int*)na_user_Vitesse)[0] = 0; ((int*)na_user_Vitesse)[2] =
0;}

/* robot's constants */
#define NB_SENSORS 8 /* number of total sensors */
#define SENSOR_READINGS 3 /* number of times to read the sensors */
#define SENSOR_LEFT 0
#define SENSOR_LEFT_DIAG1 1
#define SENSOR_LEFT_DIAG2 7
#define SENSOR_FRONT 2
#define SENSOR_RIGHT 4
#define SENSOR_RIGHT_DIAG1 3
#define SENSOR_RIGHT_DIAG2 6

#define SENSOR_NO_WALL 250 /* <100 means no wall */
#define SENSOR_WALL 250
#define SENSOR_FRONT_TST 100
#define SENSOR_FRONT_WALL 800

#define DIST_ROTATE 2550
#define DIST_UTURN 2790
#define DIST_FORWARD 3620
#define EPSILON 1000

/* maze constants */
#define SIZE_X 5
#define SIZE_Y 5

#define CELL_UNVISITED 0
#define CELL_VISITED 1
#define CELL_INACCESSIBLE 2
#define CELL_ACCESSIBLE 3

#define WALL_UNKNOWN 4
#define WALL_SET 5
#define WALL_CLEAR 6

/* globals */
unsigned char maze[SIZE_X*2+1][SIZE_Y*2+1];
unsigned char ai[SIZE_X*2+1][SIZE_Y*2+1];
unsigned char path[SIZE_X*2+1][SIZE_Y*2+1];
int robot_x;
int robot_y;
int robot_d;
int errors;

/* prototypes */
void rotate_right(void);
void rotate_left(void);
void uturn(void);
void init_maze(void);
void update_maze(void);
void display_maze(void);
void display_ai(void);
int check_win(void);
void mark_walls(void);
void mark_inaccesible(void);

int get_newy(int oldy, int d, int s);
int get_newx(int oldx, int d, int s);
void read_sensors(int*);
void recalibrate_with_walls(int *data);
void goto_nearest_accessible(void);
void simple_left_hand(void);

/* maze structure (eg 5x2 => 11x5):
 0 1 2 3 4 5 6 7 8 9 10
0 ? W ? W ? W ? W ? W ?
1 W X I W N
2 ? ? ? X ? X ? X ? W E
3 W W S
4 ? W ? W ? W ? W ? W ?

(odd, odd) => cell
(even, even) => don't care
(even, odd) or (odd, even) => wall

*/

/* this code works well ;)
 todo: improve path finding so that rotations are avoided.
 perhaps: write code to find 'best way' (least risk) to get to
 a given spot.

 maybe: write code to 'cancel' a decision in case the robot
 realizes it has choosen a long path.
*/

int main() {
int sl, sr;
int i;
int sensors[NB_SENSORS];

robot_x = 1; // in special coordinates !!!
robot_y = 1;
robot_d = 2; /* 0=North, 1=East, 2=South, 3=West */

printf("Welcome to AJO's World.\n");
led_init();
init_maze();
errors = 0;

/* while(1) {
read_sensors(sensors);
for (i=0; i<8; i++) {

printf("%d\t", sensors[i]);
}
printf("\n");

}
*/

/* time to take out jtag */
for (i=0; i<12000000; i++) ;

/* AI starts here */
while (1) {

update_maze();
mark_walls();
mark_inaccesible();
if (check_win())

break;
// display_maze();

goto_nearest_accessible();
if (errors!=0) {

// switch to simpler algorithm if we
// get lost !
led_value(8);
simple_left_hand();

}
}

display_maze();

printf("done.\n");
while(1) {

for (i=0; i<4; i++) {
led_blink(i, 500, 1);

}
display_maze();

}
}

// Routines to get new coorindates given the old ones
// a direction and quantity to move.
int get_newx(int oldx, int d, int s) {

if ((d==0) || (d==2)) {
return oldx;

} else if (d==1) {
return oldx+s;

} else {
return oldx-s;

}
}

int get_newy(int oldy, int d, int s) {
if ((d==1) || (d==3)) {

return oldy;
} else if (d==0) {

return oldy-s;
} else {

return oldy+s;
}

}

// Find which cell to go next (which is unvisited)
void goto_nearest_accessible(void) {

int i, j, k, t, min;
int min_i, min_j, min_walls;
t = 1;
for (i=0; i<SIZE_X*2+1; i++)

for (j=0; j<SIZE_Y*2+1; j++)
ai[i][j] = 0xff;

ai[robot_x][robot_y]=0;

// calculate nearest accessible (unvisited)
while (t==1) {

t = 0;
for (i=1; i<SIZE_X*2+1; i+=2) {

for (j=1; j<SIZE_Y*2+1; j+=2) {
if (ai[i][j]==0xff)

continue;
for (k=0; k<4; k++) {

if (maze[get_newx(i, k, 1)][get_newy(j, k, 1)]
==WALL_CLEAR) {

if ((ai[get_newx(i, k, 2)][get_newy(j, k, 2)]
>ai[i][j]+1) ||

(ai[get_newx(i, k, 2)][get_newy(j, k, 2)]
== 0xff)){

ai[get_newx(i, k, 2)][get_newy(j, k, 2)]
= ai[i][j]+1;

path[get_newx(i, k, 2)][get_newy(j, k,
2)] = k;

t = 1;
}

}
}

}
}

}

// find min
// it's the cell with ai[i][j] min and use the most number
// of walls set in case of tie.
min = 9999;
for (j=1; j<SIZE_Y*2+1; j+=2) {

for (i=1; i<SIZE_X*2+1; i+=2) {
if (maze[i][j]==CELL_ACCESSIBLE) {

t = 0;
for (k=0; k<4; k++) {

if (maze[get_newx(i, k, 1)][get_newy(j, k, 1)] ==
WALL_SET)

t++;
}

if ((ai[i][j]<min) || ((ai[i][j]==min) && (t>min_walls))) {
min=ai[i][j];
min_i = i;
min_j = j;
min_walls = t;

}
}

}
}
// find path to min_i, min_j
printf("I WANT TO GO TO: %d, %d\n", min_i, min_j);
while (min>0) {

k = path[min_i][min_j];
min_i = get_newx(min_i, (k+2)%4, 2);
min_j = get_newy(min_j, (k+2)%4, 2);
min--;

}

if ((robot_d + 2) % 4 == k) {
printf("rotate 180\n");
uturn();

} else if ((robot_d+1)%4 == k) {
printf("rotate right\n");
rotate_right();

} else if ((robot_d+3)%4 == k) {
printf("rotate left\n");
rotate_left();

}

t = move_forward();
/* led_value(t);

for (i=0; i<1000000; i++);
*/

// update info about cells we just passed by,
// in the maze variable.
// this code can detect incoherent readings.
for (i=1; i<=t; i++) {

int t1, t2;
t1 = get_newx(robot_x, k, i*2-1);
t2 = get_newy(robot_y, k, i*2-1);
if (maze[t1][t2]==WALL_SET)

errors++;
maze[t1][t2]=WALL_CLEAR;

}

/* must handle case t>1 */
for (i=1; i<=(t-1); i++) {

int x, y, t1, t2;
t1 = get_newx(robot_x, k, i*2);
t2 = get_newy(robot_y, k, i*2);
maze[t1][t2]=CELL_VISITED;

x = get_newx(t1, (k+1)%4, 1);
y = get_newy(t2, (k+1)%4, 1);
if (maze[x][y]==WALL_CLEAR)

errors++;
maze[x][y]=WALL_SET;

x = get_newx(t1, (k+3)%4, 1);
y = get_newy(t2, (k+3)%4, 1);
if (maze[x][y]==WALL_CLEAR)

errors++;
maze[x][y]=WALL_SET;

}
robot_d = k;
robot_x = get_newx(robot_x, k, t*2);
robot_y = get_newy(robot_y, k, t*2);

}

// if any wall has 3 walls marked as clear, then
// the code will mark the 4th wall as set (and redo the
// calculation again, since changes can propagate).
void mark_walls(void) {

int i, j, k, n, t;
for (i=1; i<SIZE_X*2+1; i+=2) {

for (j=1; j<SIZE_Y*2+1; j+=2) {
// count number of neighbouring walls
n = 0;
for (k=0; k<4; k++) {

if (maze[get_newx(i, k, 1)][get_newy(j, k, 1)]==WALL_CLEAR)
{

n++;
} else {

t=k;
}

}
if (n==3) {

maze[get_newx(i, t, 1)][get_newy(j, t, 1)]=WALL_SET;
}

}
}

}

// you win when you have explored the entire maze.
// ie: all cells are either visited or inaccessible.
int check_win(void) {

int i, j;
for (i=1; i<SIZE_X*2+1; i+=2) {

for (j=1; j<SIZE_Y*2+1; j+=2) {
if ((maze[i][j]==CELL_UNVISITED) || (maze[i][j]

==CELL_ACCESSIBLE))
return 0;

}
}
return 1;

}

// find which cells are inaccessible, by "flooding" the visited
// cells to form the accessible (you know the wall structure of
// visited cells). From the accessible cells, you can calculate
// the list of unknown cells ("flood" as long as walls are not set)
// all cells that don't get marked are inaccessible.
void mark_inaccesible(void) {

int i, j, k, t;
t = 1;
for (i=1; i<SIZE_X*2+1; i+=2) {

for (j=1; j<SIZE_Y*2+1; j+=2) {
if (maze[i][j]==CELL_UNVISITED) {

maze[i][j]=CELL_INACCESSIBLE;
}

}
}
while (t==1) {

t = 0;
for (i=1; i<SIZE_X*2+1; i+=2) {

for (j=1; j<SIZE_Y*2+1; j+=2) {
// mark all unvisited cells as inaccessible.
// we want to mark cells
// that are next to visited seperated by
// a wall_clear as accessible.
// cells that are inaccessible next to accessible are
// marked as unvisited (unknown) (except if already marked

accessible/visited)

// cells that are inaccessible next to unvisited are marked
unvisited.

if (maze[i][j]==CELL_VISITED) {
for (k=0; k<4; k++) {

if (maze[get_newx(i, k, 1)][get_newy(j, k, 1)]
==WALL_CLEAR) {

if ((maze[get_newx(i, k, 2)][get_newy(j,
k, 2)] != CELL_VISITED) &&

 (maze[get_newx(i, k, 2)][get_newy(j,
k, 2)] != CELL_ACCESSIBLE)) {

printf("%d %d causes accessible in
%d %d (%d)\n",

i, j, get_newx(i, k, 2),
get_newy(j, k, 2),

maze[get_newx(i, k, 2)]
[get_newy(j, k, 2)]);

maze[get_newx(i, k, 2)][get_newy(j,
k, 2)]=CELL_ACCESSIBLE;

t = 1;
}

}
}

} else if ((maze[i][j]==CELL_ACCESSIBLE) || (maze[i][j]
==CELL_UNVISITED)) {

for (k=0; k<4; k++) {
if (maze[get_newx(i, k, 1)][get_newy(j, k, 1)]!

=WALL_SET) {
if (maze[get_newx(i, k, 2)][get_newy(j,

k, 2)]==CELL_INACCESSIBLE) {
maze[get_newx(i, k, 2)][get_newy(j,

k, 2)]=CELL_UNVISITED;
t = 1;

}
}

}
}

}
}

}
}

/*
update the maze to mark the current cell as visited.
and check the walls.
this code can also detect incoherent readings.

*/
void update_maze(void) {

int x, y;
int sensors[NB_SENSORS];
maze[robot_x][robot_y] = CELL_VISITED;
// see what is the current situation
read_sensors(sensors);

led_value(0);
if (sensors[SENSOR_LEFT] > SENSOR_WALL)

led(0, 1);
if (sensors[SENSOR_FRONT] > SENSOR_FRONT_TST)

led(1, 1);

if (sensors[SENSOR_RIGHT] > SENSOR_WALL)
led(2, 1);

// for (x=0; x<1000000; x++)
// ;

x = get_newx(robot_x, robot_d, 1);
y = get_newy(robot_y, robot_d, 1);
if (sensors[SENSOR_FRONT] > SENSOR_FRONT_TST) {

if (maze[x][y]==WALL_CLEAR) {
printf("Error 1\n");
errors++;

}
maze[x][y]=WALL_SET;

} else {
if (maze[x][y]==WALL_SET) {

printf("Error 2\n");
errors++;

}
maze[x][y]=WALL_CLEAR;

}

x = get_newx(robot_x, (robot_d+1)%4, 1);
y = get_newy(robot_y, (robot_d+1)%4, 1);
if (sensors[SENSOR_RIGHT] > SENSOR_WALL) {

if (maze[x][y]==WALL_CLEAR) {
printf("Error 3\n");
errors++;

}
maze[x][y]=WALL_SET;

} else {
if (maze[x][y]==WALL_SET) {

printf("Error 4\n");
errors++;

}
maze[x][y]=WALL_CLEAR;

}

x = get_newx(robot_x, (robot_d+3)%4, 1);
y = get_newy(robot_y, (robot_d+3)%4, 1);
if (sensors[SENSOR_LEFT] > SENSOR_WALL) {

if (maze[x][y]==WALL_CLEAR) {
printf("Error 5\n");
errors++;

}
maze[x][y]=WALL_SET;

} else {
if (maze[x][y]==WALL_SET) {

printf("Error 6\n");
errors++;

}
maze[x][y]=WALL_CLEAR;

}
}

// simple navigation routine. this code never returns !
// simple follow the wall on the left side.
void simple_left_hand(void) {

int sensors[NB_SENSORS];

while (1) {
move_forward();
read_sensors(sensors);
if (sensors[SENSOR_LEFT] < SENSOR_NO_WALL) {

rotate_left();
continue;

} else if (sensors[SENSOR_FRONT] < SENSOR_FRONT_TST) {
continue;

} else if (sensors[SENSOR_RIGHT] < SENSOR_NO_WALL) {
rotate_right();
continue;

}
rotate_right();
rotate_right();

}
}

void init_maze(void) {
int i, j;
// set all the walls to unknown state
for (i=0; i<(SIZE_X*2+1); i++) {

for (j=0; j<(SIZE_Y*2+1); j++) {
maze[i][j] = WALL_UNKNOWN;

}
}

// set all the cells to unvisited
for (i=1; i<SIZE_X*2+1; i+=2) {

for (j=1; j<SIZE_Y*2+1; j+=2) {
maze[i][j] = CELL_UNVISITED;

}
}

// We know the outer ring has walls.
for (i=1; i<SIZE_X*2+1; i+=2) {

maze[i][0] = WALL_SET;
maze[i][SIZE_Y*2] = WALL_SET;

}
for (j=1; j<SIZE_Y*2+1; j+=2) {

maze[0][j] = WALL_SET;
maze[SIZE_X*2][j] = WALL_SET;

}
}

/* debugging purpose routine */
void display_maze(void) {

int i, j;
for (j=0; j<SIZE_Y*2+1; j++) {

for (i=0; i<SIZE_X*2+1; i++) {
if ((i%2==0) && (j%2)==0) {

printf(" ");
} else if ((i%2==1) && (j%2)==1) {

printf("%c ", maze[i][j]==CELL_UNVISITED ? '.' :
(maze[i][j]==CELL_VISITED ? '*' : (maze[i][j]

==CELL_ACCESSIBLE ? 'A' : 'I')));
} else {

printf("%c ", maze[i][j]==WALL_UNKNOWN ? '?' :
(maze[i][j]==WALL_SET ? 'X' : ' '));

}
}
printf("\n");

}
printf("\n");

}

/* debugging purpose routine */
void display_ai(void) {

int i, j;
for (j=0; j<SIZE_Y*2+1; j++) {

for (i=0; i<SIZE_X*2+1; i++) {
if ((i%2==0) && (j%2)==0) {

printf(" ");
} else if ((i%2==1) && (j%2)==1) {

if (ai[i][j]!=0xff) {
printf("%d ", ai[i][j]);

} else {
printf(" ");

}
} else {

printf("%c ", maze[i][j]==WALL_UNKNOWN ? '?' :
(maze[i][j]==WALL_SET ? 'X' : ' '));

}
}
printf("\n");

}
printf("\n");

}

/* code to get the robot to walk straight */
void recalibrate_with_walls(int *data) {

if (data[SENSOR_LEFT] > 580) {
SET_SPEED_L(0x3fff - (data[SENSOR_LEFT]-580)*0x0200/200);
SET_SPEED_R(0x3fff - (data[SENSOR_LEFT]-580)*0x0800/200);

} else if (data[SENSOR_LEFT] > 300) {
SET_SPEED_L(0x3fff - (580-data[SENSOR_LEFT])*0x1000/300);
SET_SPEED_R(0x3fff - (580-data[SENSOR_LEFT])*0x0200/300);

} else if (data[SENSOR_RIGHT] > 580) {
SET_SPEED_R(0x3fff - (data[SENSOR_RIGHT]-580)*0x0200/200);
SET_SPEED_L(0x3fff - (data[SENSOR_RIGHT]-580)*0x0800/200);

} else if (data[SENSOR_RIGHT] > 300) {
SET_SPEED_R(0x3fff - (580-data[SENSOR_RIGHT])*0x1000/300);
SET_SPEED_L(0x3fff - (580-data[SENSOR_RIGHT])*0x0200/300);

} else {
SET_SPEED_R(0x3fff);
SET_SPEED_L(0x3fff);

}
}

/* moves forward until we encounter an intersection:
- if the right or left walls disappear, then the robot
 advances exactly half a cell (recalibration)
- it uses the left and right wall to walk straight
- if there is a wall ahead, then the robot will recalibrate

*/
int move_forward(void) {

int i;

int sensors[NB_SENSORS];

/* Reset odometer */
RESET_DIST;

SET_SPEED_L(0x3fff);
SET_SPEED_R(0x3fff);
while (1) {

read_sensors(sensors);
if ((GET_DIST_L + GET_DIST_R) > (2*DIST_FORWARD)) {

break;
}

if (sensors[SENSOR_FRONT] > SENSOR_FRONT_TST) {
while (sensors[SENSOR_FRONT] < SENSOR_FRONT_WALL) {

read_sensors(sensors);
recalibrate_with_walls(sensors);

}
SET_SPEED_L(0);
SET_SPEED_R(0);
return 1;

// return (GET_DIST_L + GET_DIST_R + DIST_FORWARD) /
(2*DIST_FORWARD);

}
/* recalibrate */
recalibrate_with_walls(sensors);

}

/* Check if we have a hole on the left or right */
if ((sensors[SENSOR_LEFT] < SENSOR_NO_WALL) || (sensors[SENSOR_RIGHT] <

SENSOR_NO_WALL)) {
SET_SPEED_L(0);
SET_SPEED_R(0);
return 1;

// return (GET_DIST_L + GET_DIST_R + DIST_FORWARD) / (2*DIST_FORWARD);
}

while (1) {
read_sensors(sensors);
if (sensors[SENSOR_FRONT] > SENSOR_FRONT_TST) {

/* there is a wall in front */
while (sensors[SENSOR_FRONT] < SENSOR_FRONT_WALL) {

read_sensors(sensors);
recalibrate_with_walls(sensors);

}
SET_SPEED_L(0);
SET_SPEED_R(0);

// return (GET_DIST_L + GET_DIST_R) / (2*DIST_FORWARD);
return (GET_DIST_L + GET_DIST_R + EPSILON) / (2*DIST_FORWARD);

} else if ((sensors[SENSOR_LEFT] < SENSOR_NO_WALL) || (sensors
[SENSOR_RIGHT] < SENSOR_NO_WALL)) {

/* we have a hole on the left or right */
int tsl = GET_DIST_L;
int tsr = GET_DIST_R;
/* move half a cell */
SET_SPEED_L(0x3fff);
SET_SPEED_R(0x3fff);
/* compensate for sensor being a little discentered */

while ((GET_DIST_L-tsl) + (GET_DIST_R-tsr) < (DIST_FORWARD+200))
{

read_sensors(sensors);
if (sensors[SENSOR_FRONT] > SENSOR_FRONT_TST) {

/* there is a wall in front */
while (sensors[SENSOR_FRONT] < SENSOR_FRONT_WALL) {

read_sensors(sensors);
recalibrate_with_walls(sensors);

}
SET_SPEED_L(0);
SET_SPEED_R(0);

// return (GET_DIST_L + GET_DIST_R) / (2*DIST_FORWARD);
return (GET_DIST_L + GET_DIST_R + EPSILON) /

(2*DIST_FORWARD);
}
recalibrate_with_walls(sensors);

}
SET_SPEED_L(0);
SET_SPEED_R(0);

// return (GET_DIST_L + GET_DIST_R) / (2*DIST_FORWARD);
return (GET_DIST_L + GET_DIST_R + EPSILON) / (2*DIST_FORWARD);

}
/* recalibrate */
recalibrate_with_walls(sensors);

}
}

/* rotation code */
void rotate_right(void) {

RESET_DIST;
SET_SPEED_R(0xbfff);
SET_SPEED_L(0x3fff);
while ((GET_DIST_L-GET_DIST_R) < DIST_ROTATE)

;
SET_SPEED_R(0);
SET_SPEED_L(0);

}

void rotate_left(void) {
RESET_DIST;
SET_SPEED_L(0xbfff);
SET_SPEED_R(0x3fff);
while ((GET_DIST_R-GET_DIST_L) < DIST_ROTATE)

;
SET_SPEED_R(0);
SET_SPEED_L(0);

}

void uturn(void)
{

RESET_DIST;
SET_SPEED_L(0xbfff);
SET_SPEED_R(0x3fff);
while ((GET_DIST_R-GET_DIST_L) < 2*DIST_ROTATE)

;
SET_SPEED_R(0);
SET_SPEED_L(0);

}

/* read sensors multiple times and return average */
/* this improves the readings stability */
void read_sensors(int* data) {

int i, j, s, t;
/* clear array */
for (i=0; i<NB_SENSORS; i++)

data[i] = 0;

for (j=0; j<SENSOR_READINGS; j++) {
/* reset */
na_capt_rst->np_piodata = 1; na_capt_rst->np_piodata = 0;
for (i=0; i<NB_SENSORS; i++) {

/* with led */
na_capt_clk->np_piodata = 1; na_capt_clk->np_piodata = 0;
s = adc_acquire(na_spi_0, 5);
/* without led */
na_capt_clk->np_piodata = 1; na_capt_clk->np_piodata = 0;
t = adc_acquire(na_spi_0, 5);
data[i]+=s-t;

}
}

/* calc average */
for (i=0; i<NB_SENSORS; i++) {

data[i] = data[i] / SENSOR_READINGS;
}

}

