Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Disclaimer ©

This document is a summary of Prof. Floreano’s Bio-inspired Adaptive Machines course. The purpose
is to help the student revise for the oral examination. This document should not be considered as a
replacement for the course & course work. This document contains screen copies of the most
important slides from the course website.

I am in no way to be held responsible for any mistakes or lack of information in this document.

Evolutionary Systems (Genetic algorithms GA)

Genetic algorithms encode solutions (phenotypes) as strings (genotypes), and provide operators on
these strings in order to maximize the solution. GA are useful when you don’t want the best solution,
but a good solution.

GA is based on the reproduction of 2 (or more) parents using crossover and random mutations. In
some cases, the crossover operation needs to be adapted to the problem (e.g.: salesman).

Exploration (go to unknown region to avoid local maxima) / Exploitation problem (improve individual
towards local maxima):

Diversity can be increased by mutation & recombination => exploration

Selection of parents & survivors decrease the diversity => exploitation

There are multiple ways to select the parents and which individuals must be replaced (see slides). It is
important that the recombination produce valid chromosomes. The child must also inherit something
from both parents, and the recombination operator should be designed in conjunction with the
representation (or otherwise the recombination is catastrophic).

Pros of GA:

parallel processing

no presumption on problem space (it's also a cons)
widely applicable

can be run interactively

Low development & application cost!

Provides many alternative solutions!

In order to have GA, you must have a way to rate a given solution (fitness function). The fitness
function must be continuous.

Cellular Systems and Cellular Automata (CA)

The key idea is to build a complex system using simple cells that are replicated multiple times.

Modelling cellular systems is done using the following 4 concepts:

Cellular space => Initial condition.

Neighbourhood — local interaction. => Boundary conditions.

Cell state

Transition rules (represented by table or binary number (Wolfram’s Rule Code))

(totalistic => depends only on neighbours, outer totalistic => depends on self + neighbours)

The cell states are updated synchronously (at discrete time steps).

Applications: snow, traffic (rule 184), RNG (random number generator) (rule 30), game of life,
computation (div by 2, rule 132), etc...

Extension of CA: Probabilistic CA (forest fire, epidemic), Particles (space is divided in blocks that
alternate between even and odd space partition).

CA can also be used to analyse global properties (e.g.: patterns) based on local mechanisms.

Neural Systems

Two types of neural networks (NN): McCulloch-Pitts (based on firing rate) and Spiking neurons (based
on firing time). The problem is we don’t have any back-propagation equivalent for the Spiking neurons.

NN have 3 components: input layer, hidden layer and output layer. The function performed in each

neuron must be continuous & monotonic (& bounded & horizontal asymptotes). The input layer can
also contain a bias (additional input whose value is always -1)

1/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

The output of a neuron is a measure of how similar is its current input pattern to its pattern of
connection weights.

Hebb rule (1949 Donald Hebb): connection weight should be strengthened whenever both the
postsynaptic and presynaptic neurons are active. It is better to normalize the weights to avoid self-
amplification. Such neurons tell how familiar a pattern is.

Supervised learning (aka delta rule, gradient descent) is a method to adjust the weights so that the
error between the current output and a desired output is reduced.

Back propagation (Rumelhart et al. 1986): propagate the error back into the hidden layer.

If the neural network doesn’t have a hidden layer (aka perceptrons), it can only solve linearly separable
problems.
Problems with neural networks: local minima & over-fitting.

Applications: see course slides.

Behavioural Systems

Key principal: no planning. Sensors (stimulus) activate the reactions (response). The final robot is
sometimes less predictable, but is very responsive and doesn’t depend on an accurate world model
(since the world itself is the model).

Brooks, 1986: Augmented finite state machine. No global clock!

Conflict resolution: multiple methods (suppression/inhibition, priority, action selection, vote based,
fusion).

Usually the system is built incrementally (by adding new behaviours).

Evolutionary Robotics
Suggested by Braitenberg, 1984.

NN or GA is used to create behaviours. The input layer receives the values of the sensors, and the
output layer controls the motors.

It is sometimes hard to evolve a complex robot. Experiments have proven that it is easier to evolve a
simple robot and then to use the simpler robot’'s evolved behaviour on the more complex one. A few
iterations will be needed to modify the behaviour to fit the more complex robot. Complex robots also
take more time to simulate.

The main problem with evolutionary robotics is that the robot doesn’t have a memory, so it needs to
receive information from the environment. The environment is often artificially modified so that the
robot can evolve into something interesting.

It is difficult to simulate the output of the sensors (sensors are usually not linear with respect to their
inputs). Lookup tables or Gaussian noise are methods used to increase the results of the simulation.

Minimal simulation: the idea is to simulate only the necessary characteristics, and other parts of the
robot are simplified and randomized. The problem is to determine the relevant features.

Evolution vs Learning.

The idea is to combine learning and evolution. This will allow to help and guide the evolution process
while adapting to changes that occur faster than a generation. But the cost is an increased unreliability
(learning wrong things).

Lamarckian evolution is about transferring the learnt knowledge from one generation to the other. It is
not always a good idea, as the evolution can get stuck in local maxima.

Competitive Co-evolution

Idea: have a prey and predator model, and hope that co-evolution will improve the behaviour of both
species. The problem is that evolution enters into cycles, where one generation isn’t better than the
previous one, it is just different. This is due to the fact that the fithess function for one species is
directly influenced by the behaviour of the other species. So the fithess landscape is changing. By
testing species with previous generations we can notice that predators adapt to different situations,
while prey use random paths.

2/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

The change in the fitness landscape is not a disadvantage; it is the reason why co-evolution works: by
having a changing landscape (the landscape is smooth at first and progresses towards something
rough), it is easier to get out of local maxima and find the best solution. (solves the bootstrap problem).

Some experiments (Miller & Cliff, 1997) show that having an internal parameter for the fitness (e.g.:
survival time) gives better results than an external parameter (e.g.: distance between prey & predator).

Evolvable Electronics

Reconfigurable hardware (fpga) can be used in evolutionary robotics (a genotype can be mapped to
the fpga configuration string).

Evolutionary Robotics can find hardware that cannot be designed with traditional methods
(smaller/faster circuits but with e.g. open gates).

Constrained vs unconstrained evolution.
Extrinsic (circuit is simulated) vs Intrinsic (circuit is physically implemented).

Usually simulation works with the constrained case (combinational circuits). It is usually not possible to
simulate untraditional hardware configurations.

Circuits are tuned for the evolved hardware, so they won’t tolerate as much manufacturing process
variations as conventional circuits. Except if the simulator simulates faults, in which case we can obtain
a very fault-tolerant circuit.

Evolvable hardware is cheaper to manufacture (doesn’t require processor, NN, etc...).

The most interesting example is the evolution of a low pass filter. The traditional way of building a low
pass filter requires multiplications and additions. Evolvable hardware can solve the problem by using
only multiplexers.

There exist analogic equivalents for the fpga (circuits with basic blocks like op-amp, resistors,
capacities, etc.). The interconnection of the basic blocks can be chosen. The problem is how to avoid
short-circuits !

The size of the genotype grows as the circuits become larger. This is a major problem of evolvable
electronics. It is possible to reuse basic building blocks.

Developmental Systems

Idea is to use simple cell replication/differentiation to “grow” complex structures. The main problem is
that it is difficult to find the simple rules that generate a given structure.

L Systems (Lindenmayer, 1968): concept of rewriting (given production rules that are applied in
parallel).

Bracketed L Systems: brackets represent stack operations ([= Push,] = Pop). This is used to create
trees.

Stochastic L Systems: use of probabilities (production probabilities).

Context Sensitive L Systems: another extension of L Systems, production rules are applied only if a
certain symbol is preceding or following the symbol to “produce”.

L Systems can be used to create neural networks.

Evolution of Morphology

Shape optimization (using GA). E.g.: wing shapes, satellite structures, table.
Architecture optimization. E.g.: Lego bridge.

Art (needs genetic encoding that allows duplication, variable length genome, etc.). Usually user
(human) evaluates the design (not easy to design a fitness function).

Artificial Life (framstick, etc.).

3/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Immune Systems (IS)
Can be applied to fight computer viruses, network intruders, electronics fault.

Human immune system is based on Lymphocytes that have antibodies. The antibodies can innate
pathogens (antigens). Human IS has systems to avoid self-antigen.

There exists different types of measure for matching affinity (a match occurs if the antibody is similar to
the antigen). E.g.: Euclidean, Manhattan, Hamming distances.

Negative Selection (Forrest, 1994) proposed a way to create artificial IS. The first phase is training. He
generates random strings and checks (human intervention or other methods) if they should be
censored.

The problem is to avoid the growth of the antibodies (growth of memory requirement). Regulatory
Network solves the problem.

Detecting electronics fault: The system is trained using a system that works. The IS remembers the

correct state transitions. The major problem is that a single transistor can fail the entire system,
whereas in biological, the body has time to respond.

Collective and Swarm Intelligence

Key idea: use simple agents to create intelligence at the group level. It can allow the group to achieve
something that the individuals cannot achieve by themselves (e.g.: creating a bridge).

In some cases the individuals don’t know they are solving a problem.

One of the problems is communication and coordination among the agents. Communication can be
direct, or through the environment (stigmergy, e.g.: pheromone of ants).

Usually there is no supervisor (distributed system) !

4/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Most Important Slides

Evolutionary Systems (Genetic algorithms GA)

volutionary Cycle

4

Selection

Parents

Population

Performance

Acceptable performance at acceptable costs on a
wide range of problems

+ Intrinsic parallelism (robustness, fault tolerance)

+ Superior to other technigues on complex problems
with

— lots of data, many free parameters
— complex relationships between parameters
— many (local) optima

Advantages

No presumptions w.r.t. problem space
Widely applicable

Low development & application costs
Easy to incorporate other methods

Can be run interactively, accommodate user
proposed solutions

Provide many alternative solutions

Main Steps

Design a representation

Decide how to initialise a population

Design a way of mapping a genotype to a phenotype
Design a way of evaluating an individual

Decide how to select individuals to be parents
Decide how to operate replacement

Design suitable recombination operator(s)

Design suitable mutation operator(s)

Decide when to stop the algorithm

1.
2.
3
4.
5
B.
7.
8.
9.

Tree-Based Rep.

We need to specify a function set and a terminal set.
Itis very desirable that these sets both satisfy closure
and sufficiency.

+ By closure we mean that each of the functions in the
function set is able to accept as its arguments any
value and data-type that may possible be returned by
some other function or terminal.

— Example: protected division %

» By sufficient we mean that there should be a solution
in the space of all possible programs constructed
from the specified function and terminal sets

Replacement

Replace entire population at once.

* Choose n worse individuals and replace with n
offspring of best ones.

» Choose individuals to replace at random.

« Use inverse of roulette wheel method

+ Elitism: Always keep copies of best n individuals
from previous generation (n is called the elitism
size and is usually 1 or very small). Elitism
reduces the risk of loosing good individuals by
means of random recombination and mutation.

Key Issues

Genetic diversity
— differences of genetic characteristics in
the population

— loss of genetic diversity = all individuals
in the population look alike

— snowball effect

— convergence to the nearest local
optimum

—in practice, it is irreversible

Key Issues

Exploration vs Exploitation
— Exploration =sample unknown regions

— Too much exporation = random search,
no convergence

— Exploitation = try to improve the best-so-
far individuals

— Too much expoitation = local search only
. convergence to a local optimum

5/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Cellular Systems and Cellular Automata (CA)

Boundary conditions

Some boundary conditions We must specify

how to build the
neighborhood for
the boundary
cells that do not
have a full
neighborhood

1
Fixed 77T
T

Periodic [
7

1
[# L ™=
Adiabatic
1
= Al ==
Reflection { :
= .
|
Absorbing <j.:[..........

In practice...

To implement and run a CA experiment

. Assign the geometry of the CA space

. Assign the geometry of the neighborhood
Define the set of states of the cells

. Assign the transition rule

. Assign the boundary conditions

. Assign the initial conditions of the CA

. Repeatedly update all the cells of the CA, until
some stopping condition is met (for example, a
* pre-assigned number of steps is attained, or the

CA'is in a quiescent state, or cycles in a loop,...).

~N o oA W N

Inf r@}al definition of CA

A Cellular Automaton (CA) is
a geometrically structured and
discrete collection of
identical (simple) systems called cells
that interact only locally
with each cell having a local state
(memory) that can take a finite
number of values
and a (simple) rule used to update
the state of all cells
at discrete time steps

and synchronously for all the cells
of the automaton

ormal definition of CA

A Cellular Automaton is
an n-dimensional lattice of
identical and synchronous finite state machines

whose state is updated following a transition
function (or transition rule)

that takes into account the state of the
machines belonging to a neighborhood
of the machine, and whose geometry is |
the same for all machines .:_

si(t+1) = ¢(si() ;j € N;)

Th \érowth of Complexity

von Neumann'’s approach:

+ Usually a machine can produce
only machines of lesser
complexity

If we could build a machine
capable of self-reproduction we
would have a machine that
produces a machine of equal
complexity 7 | SEOSORCEERS

If the self-reproduction process
could tolerate some “error” then
some of the resulting machines
might have greater complexity
than the original one

CA Summary

We have only scratched the surface of the CA world.
However, we have seen that CA can used be at least as:

. Synthetic universes creators in Evolutionary and
Artificial Life experiments.

* Models and simulators of simple and complex,
biological, natural, and physical systems and
phenomena.

« Computation engines.

« Testers of hypotheses about emergent physical
and computational global properties and the
nature of the underlying local mechanisms.

6/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004

By Anonymous Coward, a.k.a. bogos.

Neural Systems

A Neural Network

Extamal Eruimorment

T T A neural network communicates with
Ouiput units the environments through input units
and cutput units. All other elements are
A% called intemal or hidden units.
. g =
Intars iy Units are linked by uni-directional
i connections.
A
()/ é A connection is characterized by a

weight and a sign that transform the

B

Estemal Ermrorment

nput Representation

LOCAL

One neuron stands for one item
A Grandmother cells
[] Scalability problem

o I — Y Robustness problem
[]
LJ
L]

)

DISTRIBUTED

Meurons encode features

One neuron can be active for several items
One item can activate several neurons
Higher representation power

Robust to damage

Learning

Leaming is experience-dependent modification of connection weights |

pre-synaplic neuron post-aynaptic neuron

synapss
[weight)

In 1949 Donald Hebb suggested that connection weaight is sirengthened
whenever both the postsynaptic and presynaptic neurons are active: this
is called the Hebb nule:

"\l",. =iy

&, s the cutput if the presynaplic neuron
, is the output if the postynaptic neuron
s the learning rate (larger than 0, but usually less than 1)

A i the modification of the synaptic weight

Supervised Learning

In supervised learning the weights are modified in order to reduce the
error between the cutput y of a neuron and its desired output £

The desired output fis also known as teaching input because it comas
from the environment {a teacher).

The authors Widrow-Hoff defined the error with the symbol dalta- fj, i it
which is why this leaming rule is also known as defia rufe.

et W, = s #H11) initialize weights to random values
lirvear
units present input pattern and
compute newron output
=0 1 x2
compute weight change using
repeat e difference between desired
tput and L
fiie ausey output and neuren outpy
inputioutput get new weights by adding
pair until computed change to previous
erroris 0

waight values

hat Hidden Units Do

Hidden units must use non-linear output functions. However, the set of
weights of one single hidden unit can still draw only one line in the
inputioutput space.

However, several hidden units can isolate one or more regions of the
space by a suitable placement of their separation linss. At this point,
each output unit of the MLP can easily tell whether an input pattern falls
within or without the region by looking at the pattern of activations of the
hidden units.

Examples of input/output
regions isolated by hidden
uniks.

ag\oPropagation (of error)

In a simple perceptron, it is easy to change the weights 5o to minimize
the error between output of the network and desired output

0= =1 Aw, = i x
i v £
i —(.’
In an MLF, what is the error of the hidden units?

This information is needed to change the weights
between input units and hidden units.

I =
_ }ii’('J ‘} ins the eaze of nondinear
P o outpul funstions

The idea suggested by Rumelhart et al. in 1988 is to propagate the error of the
output units backward to the hidden units through the connection weights:

Now that we have the error for the hidden units,
§ = c]':(__l)S‘ \w @i we can change the lower layer of connection
! ! 9 weights with the same formula used for the upper
layer.

7115

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004

By Anonymous Coward, a.k.a. bogos.

Behavioural Systems

A.l. Robotics

In traditional Artificial Intelligence robot brains are serial processing units.

Sensors ——p — actuators

uondsolad
Bunapousr
Buiuugyd
LML
1043UG3 JOl0W

The keystone ideas behind this approach are:

« Representations, Reasoning, Planning

* Model Building (for example, geometric maps)

« Functional Decomposition, Hierarchical systems
*+ Symbol manipulation

B.B. Robotics [Brooks, 1996]

The Behavior-Based approach states that intelligence is the result of the
interaction among an asynchronous set of behaviors and the environment.

manipulate the world

build maps

SCNSOrs ———fp —— actuators

explore

locomote

The keystone ideas behind this approach are:

+ Embodiment

* Situatedness

+ Emergence of complex intelligent behaviors
* No planning

Types of Control

Traditional Behavior-based

DELIBERATIVE 1 REACTIVE
= y i
Purely Symbolic : Reflexive
| F. PONSE |

PREDICTIVE CAPABILITIES
DEPENDENCE ON ACCURATE, COMPLETE WORLD MODELS

Representation-dependent
Slower response

Hign-level intelligence (cognitive)
Variable latency

Representation-free
Real-time response
Low-level intelligence
Simple computation

S Qs‘)umption architecture

Brooks, 1986

reset

suppression
R
INPUT BEHAVIORAL OUTPUT
LINES MODULE LINES
—

inhibition

Augmented Finite State Machine
- local computation

- mappable into hardware

- no global clock, memory, bus

- no central models

esulting behaviors

Courtesy of Applied Al Systems, Inc

Philosophy

* Intelligence is in the eye of the observer

» The world is its own best model

« Simplicity is a virtue

« Planning is a way of avoiding figuring out what to do next

* Robustness in the presence of noise or failing sensors is a design goal
+ Systems should be built incrementally

* No representations. No calibration. No complex computers.

*+ No high-bandwidth communication

8/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004

By Anonymous Coward, a.k.a. bogos.

Evolutionary Robotics

(——- Papulaiion manager ﬁ

Mutation
Crossover

Selective reproduction

Evaluation

Initial generation

Fitness Space

Fitness Space is a method to conceive and compare fitness functions

,/ auton .
o i {zation
seHEtirgafizati
- _ sty
implicit -
F s
-
-
-
-
-
-
[
-
-
. ”*

conventional #

iz s internal %
l)p.l!glﬁ.:’l‘lﬁﬂ nternal /
P il /

explicit el
functional behavioral

Summary

Evolutionary Robotics is a method to discover complex {not complicated)
behavioral systems without human intervention.

Evolved systems often use very simple resources because they exploit
the interaction between the robot and the environment.

It is important to perferm multiple runs, analyse evolved solutions, and
draw general principles.

Fitness function and environment play a major role in the outcome.

Incremental evolution can be used to adapt to changing environments
and/or to gradually tackle compiex problems in order to avoid the
bootstrap problem.

Simulations play an important role {save time and mechanical problems),
but it is important to know their limitations and choose a good method:

= Noise

- sampling

- minimal

The Baldwin Effect

The Baldwin effect [Baldwin, 1896, Morgan, 1896, Waddington, 1942] indicates
a phenomenon whereby learned features can indirectly transfer o the DMNA It
has been reported also in evelution of artificial systems [Mayley, 1997, Ackley
and Littman, 1381]. These are the steps that describe how the Baldwin effect
works:

1- Leaning is good for sunival and therefore is selected and maimained by evalution
2- But leaming costs bme and is risky to the lifsfperformance of the organismisystem
3- Therefore, indiwvicials who are barm with some primitive sketch of the features that

wiaiild Aarmally be leamed, kave a selective advantage vith reapect t thase that
st learn frorm the beginning

4- Gradually, Tull features that initially were leamed becorme part of the organsm

genetic code,
foaturs
accuired sumutative
during lf2 finass e, fram andem . finess
indhadual -
at berthy
r
> -
generations

\

volution OF Learning

=

Floreano and Mondada [1994] suggested to genetically encode and evolve
different types of learning rules found in biclogical brains. The rules are

Genetcally-detanmined Adapiive
; ele
Flain Hebb
| symapse | symapse
T T -1 Postsynaptic. Q-1
Presynaptic @840
svnupee strength learn 11
- hebh

Covariance .%.

- pastsymptic
- presynaptic

Important aspects:

- A newral metwork can uss different leaming rues in dferent gans

- Thers is mo reed of eacher of reloreament karming, no gradient descent and local minima
- The Balswin elfect cannel take place, individuals are selected lor their ablty to leamn

applied to the synaptic weights starting always from random initial conditions.

Summary

Leamning is very useful for robotic evelution:
— accelerates and boosis evolulionary performance
— can cope with fast changing envirenments
— can adapt to unpredictable sources of change

Evolution of leaming rules:
- s closer to the way in which biclogical neural plasticity develops
- does not require supervision and does not fall into local minima
- does not require long genelic codes and therefore improves evohvability

The combination of evolution and lifé-learning is a powerful method to
improve the transfer from simulated to real world.

9/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004

By Anonymous Coward, a.k.a. bogos.

Competitive Co-evolution

Co-evolution

Competitive Co-Evolution is a situation where two different species co-
evolve against each other. Typical examples are:

- Prey-Predator

- Host-Parastle

Fitness of each species depends on fitness of opponent species

Potential advantages of Competitive Co-evolution:
— It may increase adaptivity by producing an evolutionary arms race [Dawkins
& Krebs, 1579]
~ Mere complex solutions may incrementally emerge as each population tries
to win over the epponent
— It may be a solution to the boostrap problem
- Human-designed fitness function piays a less important role (= aulonomous
systems)
— Continuously changing fitness landscape may help to prevent stagnation in
lacal minima [Hillis, 1890]

Emerging strategies

Despite lack of progress measured against previous opponents, co-
evolved individuals display highly-adapted strategies against their
oppenents and a large variations of behaviors

Each tournament shows individuals belonging to the same generation

e predater .
o

Progress Revisited

Fermal measures of (limited) progress do not pay justice 1o the variety and
complexity of co-evelved behaviors. The problem may lay in the definition of
progress itself whereby system X is said to be better than system Y if it can do all
that system Y does and something more. After some time. such system would be
able 1o solve all the probiems of its environment. it would be a full-general system.

Oﬂuon ment
full | Jast I
P

B Instead, if progress is the ability to cope with the current situation whataver that is,
an altemnative strategy would consist in dynamically switching (adapting) strategy to
solve the sub-problem at hand. This would be a plastic-general system.

Engineering systems are designed according to definition A whereas
biclogical systems emerge according 1o definition B. Under what conditions
full-general or plastic-general systems develop and survive?

Summary

Competitive co-evolution can potentially create more efficient and
novel systems

it is hard to harness and direct it towards desired solutions (extrinsic
fitnesses limit co-evolutionary dynamics)

Generational memory is useful for preventing or retarding recycling
Genetic, phenotypic, and environmental diversity encourage progress

Competitive co-evolution may be initially used to solve the bootstrap
problem and then substituted by evolution of single population

Co-evolutionary dynamics will inevitably be part of any truly
autonomous machine

10/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004

By Anonymous Coward, a.k.a. bogos.

Evolvable Electronics

Definitions

Unconstrained evolution: Evolution explores all the circuits
Constrained evolution: Constraints are applied to the evolved circuits
Evolution is “unconstrained” when it is free to expiore all the possible circuits. Evolution may thus
explore circuits that are not normally conceivable by the traditional design methodologies. possibily
finding more efficient circuits, or circuits which exploit different principles than those of traditional

design

Circuit is simulated

Circuit is physically implemented

Extrinsinc evolution:
Intrinsic evolution:

Simulations can be used without problem when they model exactly the hardware. This is generally
the case with constrained circuits (e.g. simple combinational circuits).

However, when circuits have complex dynamics (e.g. unconstrained evolution), simulations cannot
model exactly the physical device. Hence, extrinsic evolution often generates circuits that do not work
in real hardware: circuits tune to the simulation model

The most interesting use of EHVW is unconstrained intrinsic evolution: EA can explore new circuits
and test them aceording to the physics law, without being hampered by simulation models

Evolution of an inverter with 10 bipolar transistors plugged in the EM (5 are
used by evelution). Uncommaon circuits have evolved (floating pins) [Layzell,
98]

Resulting circuit (boxes dre EM switches) The inverter evolves after 1000+ gé;g;a‘ions

Characteristics of the EM: mare flexibility!
"\ + Independence of commercial FPGAs/FPAAs
« Discrete components may be selected according to the application
+ No need to wire up the circuit by hand
+ Fine- or coarse-grained evolution
-« Programmable switches have a small resistance: no short-circuits

Challenges

Why don't we see EHW in our everyday life?
Well, many challenges have still to be solved!

Evolution of circuits is difficult (i.e. need a lot of generations), because of
two factors

+ Scalability: the size of the genotype generally grows with the size of the
circuit (for each element some bits are needed) and generate a large search
space which is difficult for EA to work on.

Evolvability: the application of the genetic
operators on the chromosome do not generate
smooth fitness landscapes

More challenges

'Some challenges typical of unconstrained evolution:

Operational envelope is unknown: does a circuit evolved on one chip work
on another chip?
Test the circuit on many chips during evolution

+ Inner working may not be understandable
Circuit may still serve as a building block

il

iy B i)
How does this work??

+ Simulation and hardware implementation do not match
Test the circuit in simulation and in hardware

esign and evolution

Design %, Evolution §
The design process is a The EVO\LIUOHBVY processisa &
bottom up approach

top down approach
Key characteristics Key characteristics:

The complete specification of the + No need for a detailed specification:
input-output relationships must be the global quality (fitness) of the circuit

known (e.g. timing diagrams, truth is used
tables)

+ Hierarchical decomposition in simpler + Flattened approach (no redundancy
blocks between building blocks)

+ Circuits designed to tolerate + Circuits are often tuned to the

manufacturing process variations hardware they were evolved on

Evolution does not use mathematical
models or design methodologies

Use of mathematical models and
design methodologies

Inner working is chosen by the Inner working is chosen by the
designer evolutionary process

ip (3 year European project)
io-inspired applications
notably multi-cellular, evolvable (P), developing (O), learning (E) circuits

Phylogenesis b Ontogenesis - Epigenesis »
(artificial evolution) (development) "l (learning) 7

+Evelution of circuit

« Self-test and self-repair « Adaptation in changing

configuration . Giowth environments
‘ Organic | CPU
| oubsysteam 32 bit, 64 instructions RISC CPU
T
. Config o + 110, organie subsystem configuration
interface | |interface + Evolution
|
‘ | T Qrganic subsystem
Reconfigurable hardware
Program Host
Data RAM « Multi-cellular system
ROM e interface ‘
- Development, learning

Possible solutions

Incremental evolution

Solve subsets of the problem
simpler circuits are evolved and
combined later on. Only possible if
subproblems can be identified.

slololoiole

- olo|=[-olo
Slol=]=

g =

\|ol=ol=(o|=o

R

5

Circuit? + Circuit2 + Circuit3 = Complete circuit

+ Reuse building blocks

Instead of evolving a circuit from
basic elements, higher level blocks
are detected in the circuit and used
as such. Difficulty: how to detect such
blocks?

Conclusion

Key points of EHW:
» No need for a complete circuit specification

= No need to define how the circuit works

Achieve better use of hardware resource

Discover new uncommon and more efficient circuits

- EHW has the properties of evolved systems: adaptability, fault
tolerance, etc.

11/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Developmental Systems

Overview Rewriting systems

Developmental systems attempt to capture mechanisms of growth of
biclogical systems. In nature, growth is given by a process of cell
duplication and differentiation. In artificial systems, it is often based on a

process of iterated symbol rewriting.

Advantages of development in ariificial systems:
— Complex structures can be described by few symbaols and rules

— Order and symmetry emerge naturally

- D pment provides when

Disadvantages of development in artificial systems:
— May generate complex structures to solve simple problems
— Difficult to introduce irregularties if necessary
— Difficult to determine symbots and rules necessary to generate a desired

structure { -> use evolution)

with environmental context

Rewriting is a technique for defining complex objects by successively
replacing parts of a simple initial object using a set of rewriting rules, or
production nies.

Snowflake curves can be generated by replacing the edges of a polygon
with open polygons [von Koch, 1905]. At each iterastion, the open polygon
is shrinked to fit the lenaths of the pohygon edges.

A,

ittt

o 5 3
Several other types of rewriting systems have been developed. These
include variations of cellular automata (Conway's game of life) and
language systemns [Chomsky, 1956].

Definition
L-systems are rewnting systems that operate on character sirings.

An L-system is composed of a set of characters over an alphabet, an
axiom o (start structure), and a set of production rules p. Production

Turtle Interpretation

Prusinkiewicz gave L-systems a graphic interpretation based on LOGO-
style turtle geometry.

SR i The state of the turtle is defined as a triplet {x, y, «) F
rules are applied in parallel and replace all characters in the string. whers the Cartesian coordinates (x. y} represant the
— turtle's posifion and the angle o, also known as heading, + o)
'. - re::;zz Example: represents the direction in which the turtle is facing.
= Development of blue-
el green bacterium Given the step size d and the angle increment
= Anabaena catenula: 6, the turtle can respond to the following
w D8 commands:
p, - & ->ab, F move forward a step of length d while
P2 @ -> ba, drawing a line. New state of the turtle is (x, v,
= Paib ->a) where x'=x + dcoso and y'=y + d sina.
\ Py:b->a f as above, but do not draw the line.
.,_{w{ * BB~ ,. + tumn left (counterclockwise) by angle o. The #=90
E s new state of the turtie is (', y', cckd). FFF-FF-F-F+F+FF-F-FFF

If no preduction rule is specified for a character 5, then we assume the

identity productionrulep:s-> 5

- tumn nght (clockwise) by angle b. The new
state of the turtle is (%', ¥, c=0).

Bracketed L-systems

Two new symbols are required to build trees so that after a branch has
been constructed, the turtle goes back to its original state and continues

the construction of the tree.

[push current state of the
turtle (position, orientation,
color, thickness, etc.) onto
a pushdown stack.

] pop a state from the

Stochastic L-systems

All plants generated by the same L-system are identical, but in nature there
are no two equal specimen. Specimen-to-specimen variation can be
modeled by introducing production probabiliies. For every symbol, there is
one or more production rules with an associated probability. The sum of zll
probabilities over the same symbol must be 1.0,

L

Six specimen of the same
- plant species
¥

stack and make it the s
current state of the turile Y

(posiion changes, but no py o F e F[+F]F[-FIF T
line is. drawn). P F S5 F+F)F p - Tl
5=45 py: F -y FLFIF i

Fl+FI-FI-FIFIF[+F]-F]

#
F—F[+F]F[-FIF

Grammar Encoding

'sagcdBaaaeDaaab.. Genome

Ewvolvable | g #: 8
paortion cCD

a a a a
C —# D —#|
a a

Summary

L-systems are interesting for computer graphics and exploring space of
topological relationships in developing biological systems.

They represented a major step into medeling and understanding plants.

o IS Lt Il LT 01 p 11 It is difficult to find the set of rules and symbols behind the generation of
o 0 0 o1 11 complex structure with desired charactenstics.
& AB
co Two methods are used:
+ Exhaustive exploration within a smaill space of alphabets and preduction rules
111 Inicial State 12 tyela 1 + Artificial evalution
Architectures of neural networks can be developed using rewriting
cpaa strategies. In addition, development can take place during robot operation
aoan and benefit from environmental context by adapting the final architecture.
aaab
Still largely unexplored field. Interactions between evolution,
morphogenesis and leaming have not yet been studied!
13} Eysla 2) Cycla 3 (Fimal Etatel A& Metwash Defined

[Kitano, 1980]

12/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004

By Anonymous Coward, a.k.a. bogos.

Evolution of Morphology

eativity & Computers

Design is an art of creation.
Can computers be creative and how?

. Creativity is only possible by going beyond the bounds of a representation
and by finding a novel solution which could not have been defined by that

representation (computers cannot be creative) [Boden, 1992]

. A computer is creative when it explores the possible design state spaces in
addition to exploring the parameters within individual design spaces

(computers can be creative) [Gero, 1998)

. The lesser the knowledae about existing relationships between the
requirements and the form to satisfy those requirements, the more a design
preblem tends towards creative design (computers can be creative
[Rosenman, 1997]

Artificial Life

Artificial Life is evolution of merphology and brain of artificial
creatures that live in environments. Evolutionary Robotics is a form
of Artificial Life

e

Define building blocks and developmental rules for body and

brain

2. Develop genetic encoding that allow duplication, variable-length
genomes, redundancy, redundancy, gene expression, etc

3. Design implicit fitness functions (energy, movement, etc.)

4. Criteria for success: survival of creatures

Virtual Creatures

Body representation is directed
graph. Nodes have properties:

= dimension

= joint type (rigid, twist, revolute, ...)

« reeursive-lirmit

= connection (position, orientation, scale,
reflection)

= terminal

= neural circuit

Meural circuit representation is directed
graph. Nodes have properties:
= sensor

* joint sensor

« contact sensor

« photosensor
= neuron {math type)

* sum

= memory

« oscillator

= max, etc.
= effector (force on muscle)

« positivelnegative (push/pull)

[Sims, 1904)

i/

genotype phenotype

Summary

Artificial Eveluticn can discover innovative and efficient morphologies
Fitness evaluation is crucial for realism and applicability

For optimization problems. must comply with industry standard software
Computation speed is major problem:

+ Start with finite element methods, then move on to realistic simulator
+ Combine simulation with real implementations

+ Use neural networks to predict hardware behavior and mix with simulation

13/15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004

By Anonymous Coward, a.k.a. bogos.

Immune Systems (IS)

Immune System

Pathogens
(antigens)

v

X

* & =

L
Primary (skin) ><

Secondary
(acids, temperature, etc.)

4

Innate Phagocyte

antibody

2 /

Lymphocytes

/N

Matching Affinity

Mathematically, the shape of a molecule m (antibody or antigen) can be
represented by a set of real-valued coordinates m={m,, m,, ..., m } which
is a point in an L-dimensional space.

The matching affinity between molecules is related to their distance D:
more distant means more complementary and higher matching affinity.

Shape space
P

thresholds
Euclidean D =

L
2(/11;] —Ag.y

2 |4b — Ag,|
=

{1 it Ab 7 Ag,

0 otherwise

I

Manhattan /)

1110001101
Used for computer and 1111000001

electronics safety
(XOR)

Hamming [) = 20
=t

0001001100

Alg rjﬂ;m: Negative Selection

Forrest (1994) devised an algorithm based on the negative selection process.
A Censoring process is first applied to the « healthy » system in order to
generate detectors of anomalous conditions (non-self).

A Monitoring process uses detectors to discover the presence of anomalies.

Phase 1 = CENSORING Phase 2 = MONITORING

Self strings
S

i No
—+[waen |
Yesi

Generate
random
strings Rn

Detector
setR

Protected
strings S

Algorithm: Clonal Selection

de Castro and von Zuben (2001) developed an algorithm based on
cloning and mutation. The algorithm must be exposed to examples of
errors. It can be used for pattern recognition.

Randomly initialise a population (P)

For each pattern in Ag
Determine affinity to each P”
Select n highest affinity from P
Clone and mutate proportional to affinity with Ag
Add new mutants to P
endFor

Select highest affinity P to form part of M
Replace n number of random new ones

Until stopping criteria

I/gaitmlfn: Regulatory Network

Timmis and Neal (2001) developed an algorithm inspired upon the regulatory
mechanism that controls the number of antibodies in the system. The algorithm is
mutation-based. but its memory size is constant, whereas in clonal selection it is
always increasing.

Initialise the immune network (P)

For each pattern in Ag
Determine affinity to each P’
Calculate network interaction
Allocate resources to the strongest members of P
Remove weakest P
endFor
If termination condition met

exit
else
Clone and mutate each P (based on probability a)
Integrate new mutants into P based on affinity
Repeat

Summary

Properties
* Recognition of novelty
» Simple and adaptive
+ Requires several layers in critical applications

Adaptive mechanisms
* Negative selection
+ Clonal selection and amplification
« Somatic hypermutation
« Regulatory mechanisms

Similarities
« Evolutionary Systems
* Neural Networks
+ Cognitive Systems (1?)

Very good page on immune systems by de Castro: www.dca.fee.unicamp.br/~Inunes

14 /15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Collective and Swarm Intelligence

Self—organization

Boids: generic simulated flocking creatures
by Craig Reynolds, 1986.

I'he essence of self-o

anization is that system structure often
appears without explicit pressure or involvement from outside
the system. In other words. the constraints on form (i.c.

4 b ;5 nization) are internal to the system. resulting from th
tions among the components and usually independent of the
%‘ [ylY physical nature of those components”.
v &)) SOS-FAQ
\ IS 4\ 4 Ingredients:
separation: avoid cohesion: steer to move
crowding local heading of forward the mean position
flockmates. local flockmates. of local flockmates. —amplification of fTuctuations . formation of seeds for growth)
— multiple interactions
Example of locomotiontfrom Scientific Ame:
I = ~ — — Example: ant nest holes
| altraction recruitment
: seed saturation

ANDRES PEREZ-URIBE ANDRES PEREZ-URIBE

Ant Colony Optimization (ACO)

An application to the Traveling Salesman Problem (TSP)
(Dorigo. Gambardella. 1997)

Concluding remarks

Swarm intelligence: a natural model of distributed problem—solving

S
g’ é — Collective systems are capable of accomplishing difTicult
tasks, in dynamic and varied envionments, without any
central coordination.

&

a) use a colony of artificial ants (agents)

b) each ant agent starts in a random city and uses a
probabilistic rule to chose a path

¢) each ant agent remembers the cities it has visited and
deposits "pheromone” along its path

d) the deposited pheromone influences the probabilistic
rule used by the ant agents to chose their path

— Collective systems can solve tasks that a single individual
cannot.

— Collective systems can achieve a problem—solving performance
that single individuals cannot achieve.

a good TSP solution is found after a certain number of iterations

"ANDRES PEREZ URIBE "ANDRES PEREZ URIBE

15/15

