
Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Disclaimer 
This document is a summary of Prof. Floreano’s Bio-inspired Adaptive Machines course. The purpose
is to help the student revise for the oral examination. This document should not be considered as a
replacement for the course & course work. This document contains screen copies of the most
important slides from the course website.
I am in no way to be held responsible for any mistakes or lack of information in this document.

Evolutionary Systems (Genetic algorithms GA)
Genetic algorithms encode solutions (phenotypes) as strings (genotypes), and provide operators on
these strings in order to maximize the solution. GA are useful when you don’t want the best solution,
but a good solution.
GA is based on the reproduction of 2 (or more) parents using crossover and random mutations. In
some cases, the crossover operation needs to be adapted to the problem (e.g.: salesman).

Exploration (go to unknown region to avoid local maxima) / Exploitation problem (improve individual
towards local maxima):
Diversity can be increased by mutation & recombination => exploration
Selection of parents & survivors decrease the diversity => exploitation

There are multiple ways to select the parents and which individuals must be replaced (see slides). It is
important that the recombination produce valid chromosomes. The child must also inherit something
from both parents, and the recombination operator should be designed in conjunction with the
representation (or otherwise the recombination is catastrophic).

Pros of GA:
 parallel processing
 no presumption on problem space (it’s also a cons)
 widely applicable
 can be run interactively
 Low development & application cost!
 Provides many alternative solutions!

In order to have GA, you must have a way to rate a given solution (fitness function). The fitness
function must be continuous.

Cellular Systems and Cellular Automata (CA)
The key idea is to build a complex system using simple cells that are replicated multiple times.

Modelling cellular systems is done using the following 4 concepts:
 Cellular space => Initial condition.
 Neighbourhood – local interaction. => Boundary conditions.
 Cell state
 Transition rules (represented by table or binary number (Wolfram’s Rule Code))

(totalistic => depends only on neighbours, outer totalistic => depends on self + neighbours)

The cell states are updated synchronously (at discrete time steps).

Applications: snow, traffic (rule 184), RNG (random number generator) (rule 30), game of life,
computation (div by 2, rule 132), etc…

Extension of CA: Probabilistic CA (forest fire, epidemic), Particles (space is divided in blocks that
alternate between even and odd space partition).

CA can also be used to analyse global properties (e.g.: patterns) based on local mechanisms.

Neural Systems
Two types of neural networks (NN): McCulloch-Pitts (based on firing rate) and Spiking neurons (based
on firing time). The problem is we don’t have any back-propagation equivalent for the Spiking neurons.

NN have 3 components: input layer, hidden layer and output layer. The function performed in each
neuron must be continuous & monotonic (& bounded & horizontal asymptotes). The input layer can
also contain a bias (additional input whose value is always -1)

1 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

The output of a neuron is a measure of how similar is its current input pattern to its pattern of
connection weights.

Hebb rule (1949 Donald Hebb): connection weight should be strengthened whenever both the
postsynaptic and presynaptic neurons are active. It is better to normalize the weights to avoid self-
amplification. Such neurons tell how familiar a pattern is.

Supervised learning (aka delta rule, gradient descent) is a method to adjust the weights so that the
error between the current output and a desired output is reduced.

Back propagation (Rumelhart et al. 1986): propagate the error back into the hidden layer.

If the neural network doesn’t have a hidden layer (aka perceptrons), it can only solve linearly separable
problems.
Problems with neural networks: local minima & over-fitting.

Applications: see course slides.

Behavioural Systems
Key principal: no planning. Sensors (stimulus) activate the reactions (response). The final robot is
sometimes less predictable, but is very responsive and doesn’t depend on an accurate world model
(since the world itself is the model).

Brooks, 1986: Augmented finite state machine. No global clock!

Conflict resolution: multiple methods (suppression/inhibition, priority, action selection, vote based,
fusion).

Usually the system is built incrementally (by adding new behaviours).

Evolutionary Robotics
Suggested by Braitenberg, 1984.

NN or GA is used to create behaviours. The input layer receives the values of the sensors, and the
output layer controls the motors.

It is sometimes hard to evolve a complex robot. Experiments have proven that it is easier to evolve a
simple robot and then to use the simpler robot’s evolved behaviour on the more complex one. A few
iterations will be needed to modify the behaviour to fit the more complex robot. Complex robots also
take more time to simulate.

The main problem with evolutionary robotics is that the robot doesn’t have a memory, so it needs to
receive information from the environment. The environment is often artificially modified so that the
robot can evolve into something interesting.

It is difficult to simulate the output of the sensors (sensors are usually not linear with respect to their
inputs). Lookup tables or Gaussian noise are methods used to increase the results of the simulation.

Minimal simulation: the idea is to simulate only the necessary characteristics, and other parts of the
robot are simplified and randomized. The problem is to determine the relevant features.

Evolution vs Learning.
The idea is to combine learning and evolution. This will allow to help and guide the evolution process
while adapting to changes that occur faster than a generation. But the cost is an increased unreliability
(learning wrong things).
Lamarckian evolution is about transferring the learnt knowledge from one generation to the other. It is
not always a good idea, as the evolution can get stuck in local maxima.

Competitive Co-evolution
Idea: have a prey and predator model, and hope that co-evolution will improve the behaviour of both
species. The problem is that evolution enters into cycles, where one generation isn’t better than the
previous one, it is just different. This is due to the fact that the fitness function for one species is
directly influenced by the behaviour of the other species. So the fitness landscape is changing. By
testing species with previous generations we can notice that predators adapt to different situations,
while prey use random paths.

2 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

The change in the fitness landscape is not a disadvantage; it is the reason why co-evolution works: by
having a changing landscape (the landscape is smooth at first and progresses towards something
rough), it is easier to get out of local maxima and find the best solution. (solves the bootstrap problem).

Some experiments (Miller & Cliff, 1997) show that having an internal parameter for the fitness (e.g.:
survival time) gives better results than an external parameter (e.g.: distance between prey & predator).

Evolvable Electronics
Reconfigurable hardware (fpga) can be used in evolutionary robotics (a genotype can be mapped to
the fpga configuration string).

Evolutionary Robotics can find hardware that cannot be designed with traditional methods
(smaller/faster circuits but with e.g. open gates).

Constrained vs unconstrained evolution.

Extrinsic (circuit is simulated) vs Intrinsic (circuit is physically implemented).

Usually simulation works with the constrained case (combinational circuits). It is usually not possible to
simulate untraditional hardware configurations.

Circuits are tuned for the evolved hardware, so they won’t tolerate as much manufacturing process
variations as conventional circuits. Except if the simulator simulates faults, in which case we can obtain
a very fault-tolerant circuit.

Evolvable hardware is cheaper to manufacture (doesn’t require processor, NN, etc…).

The most interesting example is the evolution of a low pass filter. The traditional way of building a low
pass filter requires multiplications and additions. Evolvable hardware can solve the problem by using
only multiplexers.

There exist analogic equivalents for the fpga (circuits with basic blocks like op-amp, resistors,
capacities, etc.). The interconnection of the basic blocks can be chosen. The problem is how to avoid
short-circuits !

The size of the genotype grows as the circuits become larger. This is a major problem of evolvable
electronics. It is possible to reuse basic building blocks.

Developmental Systems
Idea is to use simple cell replication/differentiation to “grow” complex structures. The main problem is
that it is difficult to find the simple rules that generate a given structure.

L Systems (Lindenmayer, 1968): concept of rewriting (given production rules that are applied in
parallel).

Bracketed L Systems: brackets represent stack operations ([= Push,] = Pop). This is used to create
trees.

Stochastic L Systems: use of probabilities (production probabilities).

Context Sensitive L Systems: another extension of L Systems, production rules are applied only if a
certain symbol is preceding or following the symbol to “produce”.

L Systems can be used to create neural networks.

Evolution of Morphology
Shape optimization (using GA). E.g.: wing shapes, satellite structures, table.

Architecture optimization. E.g.: Lego bridge.

Art (needs genetic encoding that allows duplication, variable length genome, etc.). Usually user
(human) evaluates the design (not easy to design a fitness function).

Artificial Life (framstick, etc.).

3 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Immune Systems (IS)
Can be applied to fight computer viruses, network intruders, electronics fault.

Human immune system is based on Lymphocytes that have antibodies. The antibodies can innate
pathogens (antigens). Human IS has systems to avoid self-antigen.

There exists different types of measure for matching affinity (a match occurs if the antibody is similar to
the antigen). E.g.: Euclidean, Manhattan, Hamming distances.

Negative Selection (Forrest, 1994) proposed a way to create artificial IS. The first phase is training. He
generates random strings and checks (human intervention or other methods) if they should be
censored.

The problem is to avoid the growth of the antibodies (growth of memory requirement). Regulatory
Network solves the problem.

Detecting electronics fault: The system is trained using a system that works. The IS remembers the
correct state transitions. The major problem is that a single transistor can fail the entire system,
whereas in biological, the body has time to respond.

Collective and Swarm Intelligence
Key idea: use simple agents to create intelligence at the group level. It can allow the group to achieve
something that the individuals cannot achieve by themselves (e.g.: creating a bridge).

In some cases the individuals don’t know they are solving a problem.

One of the problems is communication and coordination among the agents. Communication can be
direct, or through the environment (stigmergy, e.g.: pheromone of ants).

Usually there is no supervisor (distributed system) !

4 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Most Important Slides

Evolutionary Systems (Genetic algorithms GA)

5 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Cellular Systems and Cellular Automata (CA)

6 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Neural Systems

7 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Behavioural Systems

8 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Evolutionary Robotics

9 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Competitive Co-evolution

10 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Evolvable Electronics

11 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Developmental Systems

12 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Evolution of Morphology

13 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Immune Systems (IS)

14 / 15

Summary of Bio-inspired Adaptive Machines (Prof. Floreano) 2004
By Anonymous Coward, a.k.a. bogos.

Collective and Swarm Intelligence

15 / 15

