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Abstract 
The project consists in exploring how various parameters (like field-of-view, number of pixel, arena 
shape, quantity of contrast in environment, etc) affect the evolution of vision-based navigation. The 
objective is to find suitable parameters in order to evolve controllers for a Khepera in a few different 
environment types. 
 
Details of the simulations 
We used the goevo 1.0 simulator to test different controllers for a robot. The controllers are based on 
744 genes, and are evolved using genetic algorithms. The objective for the robot is to move the fastest 
possible in the virtual world (the worlds are 2D “rooms” with walls). Based on the motor speeds, each 
controller receives a fitness value (the greater the average motor speeds is, the greater the fitness value 
will be), and the genetic algorithm will try to optimize this fitness function by modifying the genes. The 
robot receives as an input 25 pixels from a linear camera, which’s field of view (FOV) can be set. 
Note: We dropped the infrared sensors experiments due to problems with the simulator. 
 
We ran each simulation for 200 generations. Since such a simulation takes about 45 minutes, we used 
multiple computers at the same time to gather our data. The complete simulation results are available on 
our DVD, along with video files demonstrating some of our controllers. 
 
Note: It is not possible to achieve a fitness of 1.0, because that would correspond to a robot going 
straight at full speed. Unfortunately there is no easy way (e.g. based on user input) to know what the 
approximate maximum fitness for a given world is. 
 
Parameters for the simulator 
The following parameters can be modified in the simulator: 

Robot’s options: 
 Field of view. We worked in the range 20°-130°. 
 Number of pixels the robot receives as input. We kept this one fixed to 25. 
 Preprocessing, three options: raw vision, spatial difference and mean spatial difference. 
 Which world files to use. We used rect_high.world and corridor.world. 

 
Experiments and neural network options: 
 We left everything as explained in the hand out. 



 
Evolution settings: 
 Max. number of generations: We always ran the simulations up to the 200th generation. This way 

we were able to always collect complete data. 
 Number of epochs: The number of epochs is the number of times each individual is run to 

evaluate its fitness. We set this to 2, but then realized our controllers laked stability, so we reran 
some simulations with an epoch of 20. 

  Life time (in seconds): 40. 
 Cycle time (in ms): Lowering this time will increase the rate at which the camera/sensors run. 

We used the default value of 100. 
 Evolution mode: We used simulation to generate the datasets and normal to look at the behavior 

of specific controllers. 
 Mutation rate: we used values in the range 0.001 – 0.500. 
 Crossover rate: we used the default value 0.1. 

 
Experiment 1 : The effect of the field of view parameter 
Our first experiment is to see how the field of view parameter affects the robot. 
 
We performed 2 times 7 runs, with the following FOV values: 
20°, 40°, 60°, 80°, 100°, 120° and 130°. 
Note: the configuration file has the angle in radians divided by two (half of the FOV). 
 
We had the default mutation rate: 0.05 
 
We used the following two seeds for the random number generator: 
1083150669, 2083250669 
 
Table 1 shows our results. The second column shows the number of generations we had to wait for 
before a given controller performed better than 0.80. The third column shows the number of generations 
we had to wait for before a given controller performed better than 0.85. These values represent 
controllers that usually are good enough; i.e. controllers that don’t get stuck in walls.  
 
Figure 1 is a plot of the best fitness after 200 generations vs. the FOV. You can clearly see that the 
optimal FOV is somewhere around 80°. 
 
Figure 2 shows the fitness value as the generations is evolved (using the data from the first dataset). This 
chart is hard to read, but it basically shows that each generation is not necessarily better than the 
previous one and that a FOV too narrow or too broad will prevent the generations from being able to 
rapidly evolve. 
 
What happens when the FOV is too narrow? Imagine that the FOV is very small (e.g. 0.1°). The robot 
only sees what’s exactly in front of it. Since the only way the robot can tell the distance to a wall is by 
analyzing the white-black-white pattern (by analyzing the width of the black pattern), by having a small  



 
FOV fitness > 0.80 fitness fitness > 0.85 fitness best fitness 
       
FIRST RUN      

20 78 0.802   128 0.822 
40 14 0.826 15 0.864 139 0.910 
60 8 0.809 13 0.851 53 0.916 
80 5 0.809 8 0.858 188 0.924 

100 6 0.809 9 0.854 61 0.924 
120 8 0.808 13 0.894 86 0.916 
130 11 0.824 15 0.850 67 0.897 

       
SECOND RUN      

20 15 0.849 184 0.851 184 0.851 
40 11 0.825 80 0.883 111 0.893 
60 8 0.818 10 0.851 54 0.912 
80 8 0.834 9 0.868 64 0.920 

100 5 0.844 6 0.858 78 0.924 
120 8 0.817 11 0.876 199 0.904 
130 14 0.806 18 0.874 198 0.904 

Table 1 – Summary of the FOV dataset.  
 
FOV, the robot cannot tell the distance to the walls. What about when the FOV is too large? Since the 
robot’s camera is always 25 pixels, a larger field of view will reduce the “resolution” of the camera (in 
terms of pixels per angle of vision). When the FOV gets too large, the robot doesn’t really see anything 
specific. 
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Figure 1. 



 
Figure 2 – Evolution of the fitness for different FOV values. 

 
Once we have collected the dataset, we can test specific controllers in different conditions. We noticed 
that running a given controller multiple times gives us different fitness values. This is due to the way the 
random seed is implemented in the simulator. It is possible for a controller to have very different fitness 
values from one run to another (we had values ranging from 0.053 to 0.592). It turns out these large 
differences of values are due to the fact that the robot gets stuck in walls. If this happens at the 
beginning of the simulation, the fitness value will be very low. If this happens near the end of the 
simulation, the fitness value will be higher. So depending on when the robot gets stuck in the wall, the 
fitness value can be very different. 
 
In order to reduce these random effects we decided to test the individual controllers using 100 runs. 
We also tried to obtain more robust controllers by rerunning the 7 different FOV experiments with an 
epoch of 20. It turns out this is what we should have been doing right from the beginning! 
 
It is important to understand that the robot has a memory (the neural network is not purely reactive). It is 
therefore possible that the robot learns a specific path without relying on the sensors values. Since the 
robot is reset at a specific position before each run, we should check how the robot performs when 
starting at a different position. However in order for the robot to be able to learn a path, it needs “lots” of 
memory. Our simple neural networks simply don’t have enough neurons to allow this to happen. Table 2 
shows the results of our comparison of the fitness of the best controllers based on different starting 
positions. 
 
 
 
 



FOV (30, 30) (25, 30) (25, 35) 
20 0.549 0.627 0.573 
40 0.591 0.636 0.588 
60 0.476 0.530 0.474 
80 0.880 0.846 0.869 

100 0.784 0.751 0.713 
120 0.445 0.479 0.422 
130 0.733 0.664 0.526 

Table 2 – Testing the “memory” of the network. 
 
We also experimented to see if a controller evolved for a particular FOV could be used with a different 
FOV. We ran each best controller of the previous runs with each possible FOV. Table 3 shows the 
results of the 40 runs in a matrix form. As you can see, it is possible to use a controller programmed for 
a larger FOV, but not the other way round. 
 

Controller / Lens 20 40 60 80 100 120 130 

20 0.549 0.094 0.062 0.057 0.056 0.055 0.054 

40 0.732 0.591 0.161 0.072 0.057 0.055 0.058 

60 0.519 0.854 0.476 0.110 0.069 0.059 0.059 

80 0.109 0.706 0.886 0.880 0.317 0.194 0.148 

100 0.108 0.715 0.871 0.842 0.784 0.512 0.377 

120 0.214 0.645 0.797 0.879 0.724 0.445 0.318 

130 0.216 0.559 0.755 0.861 0.864 0.804 0.733 
Table 3 – Cross running controllers with different FOV values. 

 
Experiment 2: The mutation rate parameter 
It is very intuitive that there exists an ideal mutation rate for our problem. If we could represent the 
fitness value as a function of the genes, we would see a very complex function. That means the fitness 
function has got many local maximas, but we want to find the absolute maximum. A small mutation rate 
will imply that we will get “stuck” in local maximas. A large mutation rate will imply that we will 
randomly “hop” from one point to another in the function’s domain. 
 
Again we ran 2 complete runs with 8 different mutation rates: 
0.001, 0.071, 0.141, 0.210, 0.280, 0.350, 0.420, 0.500. 
 
We used the default FOV value: 70° 
 
We used the same two seeds for the random number generator: 
1083150669, 2083250669 
 
Table 4 shows the results we obtained. It is very hard to conclude what the idea parameter is, because 
we have too little data (in order to obtain useful data we would need to run the experiment with more 
mutation rates and a much greater number of times). So besides saying that Figure 3. illustrates clearly 
what happens when the mutation rate is too high, we can’t say much. The ideal mutation rate is probably 
somewhere near 0.1. 



A lower mutation rate can be compensated by a larger population or a larger cross-over rate. By 
increasing the population size, we are increasing the chances of having a mutation, and hence 
compensating the lower mutation rate. A larger cross-over rate will also compensate a lower mutation 
rate as it will add more randomness. See Table 5 our experimental results regarding this. 

 
Mutation fitness > 0.80 fitness fitness > 0.85 fitness best fitness 
       
FIRST RUN      

0.001 27 0.808 70 0.850 197 0.917 
0.071 5 0.862 5 0.862 93 0.913 
0.141 9 0.800 11 0.851 97 0.937 
0.210 83 0.807   153 0.827 
0.280 8 0.869 8 0.869 8 0.869 
0.350     145 0.798 
0.420     42 0.797 

       
SECOND RUN      

0.001 30 0.813 39 0.855 179 0.937 
0.071 10 0.804 21 0.856 166 0.915 
0.141 6 0.815 9 0.866 31 0.885 
0.210 22 0.864 22 0.864 22 0.864 
0.280 9 0.807 61 0.852 76 0.859 
0.350     30 0.799 
0.420     158 0.775 

Table 4 – Summary of mutation dataset.  
 

 
Figure 3 – Fitness evolution for different mutation values. 



 fitness > 0.80 fitness > 0.85 max 
mutation 0.001, population 60, cross over 0.1 10 23 0.932 
mutation 0.001, population 240, cross over 0.1 3 10 0.896 
mutation 0.001, population 60, cross over 0.4 2 6 0.936 

Table 5 – Compensating low mutation values. 
 

Experiment 3 : Various preprocessing of vision (and no preprocessing) 
Evolution of robot with raw vision: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Evolution of robot with spatial difference: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Evolution of robot with mean spatial difference: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We tested the following individuals: 
-Individual 140 with a FOV 90 of degrees with raw vision. 
-Individual 197 with a FOV 90 of degrees with spatial difference 
-Individual 107 with a FOV 90 of degrees with mean spatial difference. 
 
The raw vision version seems to avoid walls but performs badly (lower fitness value). The spatial 
difference version performs well, but it avoids the walls with small jerks. The mean spatial difference 
runs smoother; it really seems to follow the walls as opposed to just avoiding them. 
 
Part II - Navigating in corridors 
 
The goal of this experiment is to try different configurations in order to evolve a controller that moves in 
a corridor without getting blocks by the walls. 

  
 
Configuration 1: 
Life time = 40s 
Mutation rate = 0.05 
Crossover rate = 0.1 
Number of epochs = 2 
Spatial difference 
Resolution of linear camera = 25 
Both motors must be forward 
 
 
 
 
 



 
 
 

 
 
Configuration 2: 
Life time = 80s 
Mutation rate = 0.05 
Crossover rate = 0.1 
Number of epochs = 2 
Spatial difference 
Resolution of linear camera = 25 
Both motors must be forward 
 
 
 
 
 
 
 
 
 

 
 
 

Configuration 3: 
Life time = 40s 
Mutation rate = 0.05 
Crossover rate = 0.1 
Number of epochs = 2 
Spatial difference 
Resolution of linear 
camera = 13 
Both motors must be 
forward 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Configuration 4: 
Life time = 40s 
Mutation rate = 0.05 
Crossover rate = 0.1 
Number of epochs = 2 
No filter on linear camera 
Resolution of linear camera = 13 
Both motors must be forward 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
Configuration 5: 
Life time = 40s 
Mutation rate = 0.05 
Crossover rate = 0.1 
Number of epochs = 20 
Mean spatial difference 
Resolution of linear camera = 25 
Motion must be forward and 
trajectory straight 



In order to solve the corridors problem, it is very important to use a large epoch value during the 
evolution phase. We also choose a small FOV, since we want our robot to move towards distant walls, 
and a narrow FOV will help the robot detect these walls (since further walls change from black to white 
in higher frequencies). 
 
The first configurations we tried were Configurations 1 through 4, although achieving a quite a high 
fitness, the controller evolved would only run in small circles. 
 
The last configuration we tried was Configuration 5, the version with a FOV of 30 degrees creates a 
controller with a fitness around 0.425 and has an oscillating behavior.  
The version with a FOV of 45 degrees spits out a robot which is able to navigate in the corridors. It has a 
lower fitness than the 30 degree version, but behaves in a better way. 
 
So to conclude this section on corridor navigation, we think the important factors are: fitness function; if 
we don’t define it the right way, evolution can find an alternate, unpredicted solution that maximizes the 
fitness in a way that doesn’t suite us. The FOV and epoch values are also very critical. 
 
Conclusions 
This project gave us an understanding of how evolutionary robotics work and of what are the advantages 
and disadvantages of working with such algorithms. 
 
The main point that we found very frustrating is the post-simulation-data-analysis phase. The simulator 
generates a lot of data, and it is very difficult to understand if a specific behavior is due to evolution or is 
just a temporary random occurrence due to the nature of genetic algorithms. Running multiple runs with 
different parameters requires a lot of time, and we have no exact understanding and control over the 
neural network. 
 
Applying genetic algorithms to real world problems is perhaps not a great idea. It is difficult / 
impossible to predict the outcome of the system when faced with a new situation. Sometimes genetic 
algorithms can adapt themselves to different situations (as was illustrated in the lectures and the 
experiment with the different FOV), but sometimes the evolved robot will just not behave the right way. 
 
Another important point is that the simulated environment is over simplified by having textures on the 
walls which helps a lot the robot. It is difficult to have simple controllers work in “unmodified” 
environments. This can also be noticed at the biological level, where ants leave trails of pheromone (and 
thus modify their environment). The outcome is that the evolved controller is highly tailored to the 
environment it was evolved in, and taking it in another environment produces poor results. 
 
A solution to the “texture problem” is to have more powerful and intelligent sensors, for instance a 
sensor that can detect the direction of a gap in the wall, at which distance a wall is etc. But this raises the 
problems of how to design smart sensors. 
 
Using evolution robotics for goal oriented tasks can be difficult, as by definition a task is either 
completed successfully or it is not, which brings us to the problem of defining proper fitness functions. 
There is also a problem related to how to feed information about a task (e.g. coordinates of a destination) 
into the neural network and still obtain results. 
 
Finally, evolved behavior is dependent on the sensor configuration. 


