
Design Of Proje
t 215-412:Implementing A Thread LibraryAnd The 412maze GameAlok Menghrajani (amenghra�andrew.
mu.edu)&Vikram Manjunath (vikramm�
s.
mu.edu)February 17, 20031 Deadlo
k Dete
tion:Following is a detailed des
ription of our design for deadlo
k dete
tion:In a single maze request move(), if monsters A, B and C want to move to
ells x, y and z, thenwe add all of A, B and C to the \wait" list of x, y and z. As long as a
ertain group of monsters iswaiting (has not yet moved in or been told that it
an't by maze request move()) on a
ertain
ell,that group of monsters is kept in the \wait" list of that
ell. Whenever a request is made, we
he
kif adding the monsters to the lists of the requested
ells is going to lead to a
ir
ular wait. We dothis by doing a DFS (on the graph formed by viewing the monsters as nodes and the presen
e ofa monster one another monster's
urrent
ell's list as an edge). We do this with a short re
ursiveroutine. Sin
e it is a very tight and small routine, we believe that an optimizing
ompiler shouldbe able to emit
ode that
an re
urse without too mu
h overhead.2 asm spinlo
k.sThis provides simple aquire and release fun
tions for spin lo
ks.void get spinlo
k(int *lo
k)This fun
tion blo
ks until the lo
k at address lo
k is obtained. It tries to do an ex
hange,insterting a 0 and waiting to re
eive a 1. It spins by yielding after a failure and then trying againwhen it is s
heduled next.extern void put spinlo
k(int *lo
k) This fun
tion just ex
hanges (x
hg in x86) a 1 intothe lo
k.extern int asm XCHG (int * lo
k, int value) This simply gives the fun
tionality of thex
hg x86 instru
tion. It tries to ex
hange value into the address lo
k.3 asm sysmin
lone.sint asm sysmin
lone(void *sta
k) This is a wrapper for the min
lone system
all. It takes
areof setting the sta
k pointer of the
hild pro
ess to the pla
e pointed to by sta
k. It assumes thatthe default return address is set (More details in se
tion thr.
). Also, it does not a
tually do a
allin the
hild pro
ess. In stead, it assumes that the sta
k that is passed in is set up su
h that the topword is the argument for the
hild pro
ess, the se
ond word is the default return address and the1

third word is the the address whi
h is just above the new %esp and is the address of the fun
tionto be
alled. So, this fun
tion simply does a ret and this goes to the appropriate fun
tion.It also returns the
hild's id or -1 to the parent pro
ess, depending on whether or not it issu

essful. -1 is returned in the
ase of failure.4
ondition.
This provides a
ondition variable pa
kage are spe
i�ed in the assignment.We implemented
ondition variables using a spinlo
k and a queue. The spinlo
k is to prote
tthe queue datastru
ture.int
ond init(
ond t *
v) Intializes a
ondition variable. This needs to be
alled beforeusing the
ondition variabls sin
e the internal datastru
tures need to be initialized.int
ond destroy(
ond t * mp) This frees the memory that is allo
atd during
ond init.int
ond wait(
ond t *
v,mutex t * mp) When a thread
alls this, it is pla
ed on
v'squeue and the mutex mp is released just before the thread is put to sleep.int
ond wait spin(
ond t *
v, int * spinlo
k) This is identi
al to
ond wait ex
eptthat it takes a pointer to a spinlo
k (int) instead of a mutex.int
ond signal(
ond t *
v) Signals to the �rst pro
ess on the queue that the predi
atehas been satis�ed and frees the memory that eas used for that node of the queue.int
ond broad
ast(
ond t *
v) Signals to all pro
esses on the queue and destroys thequeue.5 maze.
int maze init() initializes all the datastru
tures that the game will need. This in
ludes an arrayof
ell ts of size BOARD WIDTH X BOARD HEIGHT. Ea
h
ell t has various feilds as follows:typedef stru
t hippo plays pa
mantile t tile;monster t * monster; // This points to//the mosnter standing on that tileint lo
k; // we have lo
ks for ea
h
ellmonster t** reserve; // This is to make// reservations through make request moveint reserve n; // This is the number of threads that have// reserved that tilewaitlist* deps; // This is a queue of monsters waiting on the
ell
ond t wait; // The
ondition variable that monsters
an wait on
ell tint maze
leanup() The datastru
tures that are intialized in init are
leaned up here.tile t maze get board
ontents(int x, int y) As spe
i�ed in the api. This returns the
ontents of the tile, be it an a
tual tile
ontent or a monster standing there.int maze set board
ontents(int x, int y, tile t tile) This
hanges the
ontents ofthe board. But it does not
hange a monster who is standing there.monid t maze new monster(tile t t, int x, int y) Creates a monster on the
ell (x,y) ofthe board, with the
olor t. Makes sure that no rules of the game su
h as not being on a wall areviolated. 2

int maze destroy monster(monid t mon) Removes the monster with monid mon from themaster list of monsters. Also, removes the want edges and reservations made by this monster.int maze move monster(monid t mon, dire
tion t dir) Moves the monster to the appro-priate
ell if permitted. This
he
ks that if there is a reservation on the destination
ell, unless monis the owner of that reservation, he is not allowed to make that move. In the
ase of a move a
tuallytaking pla
e, the monsters who are waiting on the
ell are woken up by a
ond broad
ast() onthe
onditional variable of that
ell.int maze request move(move
ombo t *ml, int n) We
he
k that for various illegal situa-tions. If we don't return FAILURE, , we make insert a \want edge" by putting the monsters onthe \wait" lists of the destination
ells. Then, we
he
k if this leads to a deadlo
k. If so, we removethe want edge and return ERR LOCK. And then, we make a reservation for the
ells, if they arenot already reserved by other groups. We then
he
k if the
ells are free to move to and if theyare, we return SUCCESS. Otherwise, we keep waiting on those
ells to be
ome free, relenquishingthe reservations we made everytime we go to sleep and pi
king them up again when we wake up.* READ NOTE AT END ABOUT WHY OUR DESIGN IS LIKE THIS.void maze set game status(int s) This
hanges the variable gane status under thread safe
onditions.int maze get game status(void) returns the value of game status.void maze abort(void) wakes up all the sleeping threads who
alled maze wait.void maze wait(void) goes to sleep on a queue.int maze
onsume(monid t mon) sets the
ell on whi
h mon is standing to EMPTY.Note: that all of our global data stru
tures are prote
ted by spinlo
ks.6 mutex.
We have implemented our mutexes in a manner similar to pthreads mutexes rather than whatthe assignment asked for in spe
i�
. We do not use this anywhere in out
ode. We have used\spinlo
ks" instead, and these behave mu
h like what is asked for in the assignment spe
i�
ation(in the form of mutexes). This mutex implementation has bounded waiting and uses a queue tode
ide whi
h of the waiting threads should get the lo
k next.7 thr.
The main thread library.

3

typedef stru
t threadstru
t thread *next; // Linked list of threads. The first one is// referen
ed by threads list.int tid; // Thread ID, same as pro
ess ID.void *sta
k; // Pointer to the thread's sta
k.// This is a
tually a pointer to the bottom// of the sta
k, sin
e it's the// pointer returned by mallo
 before we// add the size of the sta
k to it (be
ause// sta
ks grow downwards)int joinerlo
k; // A spinlo
k to avoid two people from// joining on a given thread at the same time.queue node * joiners; // List of threads to wake up on exitvoid* exit status; // This is where the exit status is saved// when the thread exits.int state; // The state of the thread, either running// or zombie (exited, ready to be reaped)int runlo
k; // lo
k to avoid going to sleep right after a//
all to wake up.int exitlo
k; // exitlo
k is a spinlo
k to avoid a thread// from being reaped before it has done with// exiting.thread t;universal joiners is a list of threads that have to be woken up when a any thread exits.int thr init(unsigned int size)This routine should be
alled before
reating any threads. mm init should have been
alledbefore. Returns -1 is
alled more than on
e. Size is the size of the sta
ks for the threads. Usually1KB or 2KB. thr init "
onverts" the
alling pro
ess into a thread (it
reates a thread stru
ture forit), so that it
an be joined upon.int thr
reate(void *(*fun
)(void *), void *args)Creates a new thread and runs fun
 with argument args. It returns the tid of the
reated thread.Allo
ates and sets up a new sta
k for the thread. Right before
allig sys min
lone, the sta
k lookslike this:args�asm default exit�fun
This way we run the fun
 by simply doing the ret instru
tion (line 35 of asm sysmin
lone.s)The threads list is lo
ked before
alling sys min
lone in order to insure that the parent will �nish�lling the thread t stru
ture before the new thread a

esses it.There is no private addressing spa
e (0 bytes are reserved at the top of the sta
k).int thr join(int tid, int *departed, void **status) suspend exe
ution until thread tidexits. If tid is 0, you will be woken up by any exiting thread (universal joiner). The beheaviourwhen you are woken up will depend if you are on the universal joiners list (tid=0) or a spe
i�
thread's joiners list (tid!=0).If you are on the universal list (tid=0), and you don't �nd any threads to reap, you go ba
kto sleep. If you are on a spe
i�
 thread's joiners list, and that thread has already been reaped by4

someone else, then you return an error.void thr exit(void *status) Simply wake up all the threads in universal joiners and thethreads joiners list and "atomi
ally" unlo
k the exit lo
k and
all sys exit (these two operationsneed not be atomi
, but they need to be exe
uted without relying on the sta
k, as it may no longerexist. So we wrote them in assembly, whi
h avoid pro
edure
all, and thus avoids the need to usea sta
k !)thread t* thr new() simpy allo
ate memory for one thread t stru
ture.thread t* find thread t(int tid) Ea
h time we need to a

ess a thread's own thread t we
all �nd thread t with sys get pid() as parameter. This implies going through the entire linked listto �nd ownself. It turns out that there is no other easy way out, sin
e we
ould save some data onthe thread's private address (at the top of the sta
k), but �nding the top of the sta
k isn't alwaystrivial.int thr getid() same as sys get pid()Note: we have assumed that only thread safe mallo
 and thread safe free (whi
h uses an in-ternal spinlo
k) that we have provided in safe mallo
.
 will be
alled by the user of the pa
kageto allo
ate memory and no dire
t
alls will be made.8 A note on our design of deadlo
k dete
tion:Given that we did not follow the text book algorithm for deadlo
k dete
tion, we were for
ed to trya few iterations before we
ame up with what we have now. Our initial design was to simply notdraw a distin
tion between wanting and reserving a
ell. Our �nal design was
ompliant with thegame and it turns out to be very similar to what is in the text book and what was presented in
lass. We realise that there is a
orner
ase (that will not be tested by this 412maze game. This isthat if we have two
alls to maze request move() Su
h that both
alls ask for the same
ells butin di�erent order, then we
ould potentially end up in an undete
ted deadlo
k. The work aroundis simply to syn
hronize
alls to maze request move() or to
anoni
alize the order in whi
h we getthe lo
ks for the
ells.

5

