
Design Of Projet 215-412:Implementing A Thread LibraryAnd The 412maze GameAlok Menghrajani (amenghra�andrew.mu.edu)&Vikram Manjunath (vikramm�s.mu.edu)February 17, 20031 Deadlok Detetion:Following is a detailed desription of our design for deadlok detetion:In a single maze request move(), if monsters A, B and C want to move to ells x, y and z, thenwe add all of A, B and C to the \wait" list of x, y and z. As long as a ertain group of monsters iswaiting (has not yet moved in or been told that it an't by maze request move()) on a ertain ell,that group of monsters is kept in the \wait" list of that ell. Whenever a request is made, we hekif adding the monsters to the lists of the requested ells is going to lead to a irular wait. We dothis by doing a DFS (on the graph formed by viewing the monsters as nodes and the presene ofa monster one another monster's urrent ell's list as an edge). We do this with a short reursiveroutine. Sine it is a very tight and small routine, we believe that an optimizing ompiler shouldbe able to emit ode that an reurse without too muh overhead.2 asm spinlok.sThis provides simple aquire and release funtions for spin loks.void get spinlok(int *lok)This funtion bloks until the lok at address lok is obtained. It tries to do an exhange,insterting a 0 and waiting to reeive a 1. It spins by yielding after a failure and then trying againwhen it is sheduled next.extern void put spinlok(int *lok) This funtion just exhanges (xhg in x86) a 1 intothe lok.extern int asm XCHG (int * lok, int value) This simply gives the funtionality of thexhg x86 instrution. It tries to exhange value into the address lok.3 asm sysminlone.sint asm sysminlone(void *stak) This is a wrapper for the minlone system all. It takes areof setting the stak pointer of the hild proess to the plae pointed to by stak. It assumes thatthe default return address is set (More details in setion thr.). Also, it does not atually do a allin the hild proess. In stead, it assumes that the stak that is passed in is set up suh that the topword is the argument for the hild proess, the seond word is the default return address and the1

third word is the the address whih is just above the new %esp and is the address of the funtionto be alled. So, this funtion simply does a ret and this goes to the appropriate funtion.It also returns the hild's id or -1 to the parent proess, depending on whether or not it issuessful. -1 is returned in the ase of failure.4 ondition.This provides a ondition variable pakage are spei�ed in the assignment.We implemented ondition variables using a spinlok and a queue. The spinlok is to protetthe queue datastruture.int ond init(ond t * v) Intializes a ondition variable. This needs to be alled beforeusing the ondition variabls sine the internal datastrutures need to be initialized.int ond destroy(ond t * mp) This frees the memory that is alloatd during ond init.int ond wait(ond t * v,mutex t * mp) When a thread alls this, it is plaed on v'squeue and the mutex mp is released just before the thread is put to sleep.int ond wait spin(ond t * v, int * spinlok) This is idential to ond wait exeptthat it takes a pointer to a spinlok (int) instead of a mutex.int ond signal(ond t * v) Signals to the �rst proess on the queue that the prediatehas been satis�ed and frees the memory that eas used for that node of the queue.int ond broadast(ond t * v) Signals to all proesses on the queue and destroys thequeue.5 maze.int maze init() initializes all the datastrutures that the game will need. This inludes an arrayof ell ts of size BOARD WIDTH X BOARD HEIGHT. Eah ell t has various feilds as follows:typedef strut hippo plays pamantile t tile;monster t * monster; // This points to//the mosnter standing on that tileint lok; // we have loks for eah ellmonster t** reserve; // This is to make// reservations through make request moveint reserve n; // This is the number of threads that have// reserved that tilewaitlist* deps; // This is a queue of monsters waiting on the ellond t wait; // The ondition variable that monsters an wait onell tint maze leanup() The datastrutures that are intialized in init are leaned up here.tile t maze get board ontents(int x, int y) As spei�ed in the api. This returns theontents of the tile, be it an atual tile ontent or a monster standing there.int maze set board ontents(int x, int y, tile t tile) This hanges the ontents ofthe board. But it does not hange a monster who is standing there.monid t maze new monster(tile t t, int x, int y) Creates a monster on the ell (x,y) ofthe board, with the olor t. Makes sure that no rules of the game suh as not being on a wall areviolated. 2

int maze destroy monster(monid t mon) Removes the monster with monid mon from themaster list of monsters. Also, removes the want edges and reservations made by this monster.int maze move monster(monid t mon, diretion t dir) Moves the monster to the appro-priate ell if permitted. This heks that if there is a reservation on the destination ell, unless monis the owner of that reservation, he is not allowed to make that move. In the ase of a move atuallytaking plae, the monsters who are waiting on the ell are woken up by a ond broadast() onthe onditional variable of that ell.int maze request move(move ombo t *ml, int n) We hek that for various illegal situa-tions. If we don't return FAILURE, , we make insert a \want edge" by putting the monsters onthe \wait" lists of the destination ells. Then, we hek if this leads to a deadlok. If so, we removethe want edge and return ERR LOCK. And then, we make a reservation for the ells, if they arenot already reserved by other groups. We then hek if the ells are free to move to and if theyare, we return SUCCESS. Otherwise, we keep waiting on those ells to beome free, relenquishingthe reservations we made everytime we go to sleep and piking them up again when we wake up.* READ NOTE AT END ABOUT WHY OUR DESIGN IS LIKE THIS.void maze set game status(int s) This hanges the variable gane status under thread safeonditions.int maze get game status(void) returns the value of game status.void maze abort(void) wakes up all the sleeping threads who alled maze wait.void maze wait(void) goes to sleep on a queue.int maze onsume(monid t mon) sets the ell on whih mon is standing to EMPTY.Note: that all of our global data strutures are proteted by spinloks.6 mutex.We have implemented our mutexes in a manner similar to pthreads mutexes rather than whatthe assignment asked for in spei�. We do not use this anywhere in out ode. We have used\spinloks" instead, and these behave muh like what is asked for in the assignment spei�ation(in the form of mutexes). This mutex implementation has bounded waiting and uses a queue todeide whih of the waiting threads should get the lok next.7 thr.The main thread library.

3

typedef strut threadstrut thread *next; // Linked list of threads. The first one is// referened by threads list.int tid; // Thread ID, same as proess ID.void *stak; // Pointer to the thread's stak.// This is atually a pointer to the bottom// of the stak, sine it's the// pointer returned by mallo before we// add the size of the stak to it (beause// staks grow downwards)int joinerlok; // A spinlok to avoid two people from// joining on a given thread at the same time.queue node * joiners; // List of threads to wake up on exitvoid* exit status; // This is where the exit status is saved// when the thread exits.int state; // The state of the thread, either running// or zombie (exited, ready to be reaped)int runlok; // lok to avoid going to sleep right after a// all to wake up.int exitlok; // exitlok is a spinlok to avoid a thread// from being reaped before it has done with// exiting.thread t;universal joiners is a list of threads that have to be woken up when a any thread exits.int thr init(unsigned int size)This routine should be alled before reating any threads. mm init should have been alledbefore. Returns -1 is alled more than one. Size is the size of the staks for the threads. Usually1KB or 2KB. thr init "onverts" the alling proess into a thread (it reates a thread struture forit), so that it an be joined upon.int thr reate(void *(*fun)(void *), void *args)Creates a new thread and runs fun with argument args. It returns the tid of the reated thread.Alloates and sets up a new stak for the thread. Right before allig sys minlone, the stak lookslike this:args�asm default exit�funThis way we run the fun by simply doing the ret instrution (line 35 of asm sysminlone.s)The threads list is loked before alling sys minlone in order to insure that the parent will �nish�lling the thread t struture before the new thread aesses it.There is no private addressing spae (0 bytes are reserved at the top of the stak).int thr join(int tid, int *departed, void **status) suspend exeution until thread tidexits. If tid is 0, you will be woken up by any exiting thread (universal joiner). The beheaviourwhen you are woken up will depend if you are on the universal joiners list (tid=0) or a spei�thread's joiners list (tid!=0).If you are on the universal list (tid=0), and you don't �nd any threads to reap, you go bakto sleep. If you are on a spei� thread's joiners list, and that thread has already been reaped by4

someone else, then you return an error.void thr exit(void *status) Simply wake up all the threads in universal joiners and thethreads joiners list and "atomially" unlok the exit lok and all sys exit (these two operationsneed not be atomi, but they need to be exeuted without relying on the stak, as it may no longerexist. So we wrote them in assembly, whih avoid proedure all, and thus avoids the need to usea stak !)thread t* thr new() simpy alloate memory for one thread t struture.thread t* find thread t(int tid) Eah time we need to aess a thread's own thread t weall �nd thread t with sys get pid() as parameter. This implies going through the entire linked listto �nd ownself. It turns out that there is no other easy way out, sine we ould save some data onthe thread's private address (at the top of the stak), but �nding the top of the stak isn't alwaystrivial.int thr getid() same as sys get pid()Note: we have assumed that only thread safe mallo and thread safe free (whih uses an in-ternal spinlok) that we have provided in safe mallo. will be alled by the user of the pakageto alloate memory and no diret alls will be made.8 A note on our design of deadlok detetion:Given that we did not follow the text book algorithm for deadlok detetion, we were fored to trya few iterations before we ame up with what we have now. Our initial design was to simply notdraw a distintion between wanting and reserving a ell. Our �nal design was ompliant with thegame and it turns out to be very similar to what is in the text book and what was presented inlass. We realise that there is a orner ase (that will not be tested by this 412maze game. This isthat if we have two alls to maze request move() Suh that both alls ask for the same ells butin di�erent order, then we ould potentially end up in an undeteted deadlok. The work aroundis simply to synhronize alls to maze request move() or to anonialize the order in whih we getthe loks for the ells.

5

