
 

Bitcoin Transaction Malleability in 2018 
Will McChesney | Alok Menghrajani 
 
Tl;dr: Transaction malleability used to be a potential risk when transacting on the Bitcoin network.                             
Today, legacy transactions are protected from malleability by ad-hoc checks. Until the adoption of                           
Segregated Witness, miners have the ability to perform some forms of malleability abuse. 
 
Bitcoin transactions have a transaction id (txid) formed as a hash over the data involved in the 
transaction. It is common for wallet related software to assume that this identifier is 
immutable. 
 
However, the txid is only immutable once the exact data in the transaction has been finalized by 
being mined into the blockchain. Until then, any node on the network is able to make subtle 
changes to the underlying data, which results in a different hash. 
 
This is not a security issue because it is not possible to alter how many bitcoins are transferred 
from what input to what output. However, details such as the signature “encoding” or the exact 
signature script can be altered: they are malleable, making the txid malleable as well. 
 
Transaction malleability has been a known issue for a long time (since at least ​2011​). A proposal 
to fix this issue (​BIP 62, Dealing with malleability​) using ad-hoc checks was authored by Pieter 
Wuille in March 2014. The proposal was withdrawn in November 2015. The fact that the 
proposal was withdrawn does not imply that transaction malleability is easy to perform or still 
a major risk. 
 
This document collects the history of transaction malleability and when various fixes were 
implemented. We link to relevant commits and code snippets in Bitcoin Core’s GitHub repo. 
 
In the longer term, ​Segregated Witness​ (segwit) solves transaction malleability in a cleaner way: 
by not including the signature in the txid computation. 

Transaction validation 

A transaction specifies inputs and outputs. The inputs of a given transaction refer to outputs 
from previous transactions with an additional script fragment (scriptSig). The outputs of a 
given transaction are script fragments that define a spending condition (scriptPubKey). 
 
For a transaction to be valid, the spending condition from previous outputs must correctly 
validate. This validation happens by concatenating scriptSig and scriptPubKey and evaluating 
the resulting script in an interpreter. If the remaining value on the evaluation stack is true, the 
spending condition is valid. 
 

https://bitcointalk.org/index.php?topic=8392.msg1245898
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki


 

In the transaction malleability case, we look at ways to mutate scriptSig without changing the 
interpreter’s final result. 

Non-push operations in scriptSig 

Typically, a scriptSig only contains push operations. Non push operations enable the creation of 
equivalent scripts in an infinite number of ways. For example, pushing 1, pushing 2 and then 
performing an addition operation is equivalent to pushing 3. 
 
Gavin Andresen implemented ​IsPushOnly​ as part of standard transaction validation in 
December 2010 (​a206a2​). By default, this check is enabled in ​mainnet​ and disabled in ​testnet​. 
 
It seems Pieter Wuille added additional code to perform a similar check in October 2014 
(​d752ba​). Pieter’s change is however only enabled in tests. Did he forget to add 
SCRIPT_VERIFY_SIGPUSHONLY​ to the ​standard flags​? 
 
Fun quirk: IsPushOnly() considers OP_RESERVED to be a push-type opcode (the code simply 
checks if the opcode is less than a specific value). 

Push operations in scriptSig of non-standard size type 

The scripting language uses variable length encoding to save space. It was possible to encode 
push values in various equivalent ways. 
 
Pieter Wuille added ​CheckMinimalPush​ in October 2014 (​698c6a​). 

Superfluous scriptSig operations 

Only the top element of the stack needed to be true for a script evaluation to be considered 
valid. Superfluous values could remain below the top element. 
 
Pieter Wuille implemented a check in October 2014 (added in ​b6e03c​ and enabled in ​da918a​) to 
ensure the stack only contains a single element. This check only applies to some types of 
transactions. 

Non-DER encoded ECDSA signatures 

It was possible to encode signatures in different formats. This was possible, because the bitcoin 
code was passing the data to OpenSSL, which accepts various different formats (DER, BER, etc.). 
 
Today, ​IsValidSignatureEncoding​ enforces that the signature is encoded in a canonical way. 
 
The function was initially named IsDERSignature and was implemented by Pieter Wuille in 
October 2014 (​9df9cf​) as part of BIP 62. 

https://github.com/bitcoin/bitcoin/blob/0.16/src/script/script.cpp#L237
https://github.com/bitcoin/bitcoin/commit/a206a23980c15cacf39d267c509bd70c23c94bfa
https://github.com/bitcoin/bitcoin/blob/0.16/src/chainparams.cpp#L150
https://github.com/bitcoin/bitcoin/blob/0.16/src/chainparams.cpp#L252
https://github.com/bitcoin/bitcoin/commit/d752ba86c1872f64a4641cf77008826d32bde65f
https://github.com/bitcoin/bitcoin/blob/0.16/src/script/interpreter.h#L58
https://github.com/bitcoin/bitcoin/blob/0.16/src/policy/policy.h#L52
https://github.com/bitcoin/bitcoin/blob/0.16/src/script/interpreter.cpp#L228
https://github.com/bitcoin/bitcoin/commit/698c6abb25c1fbbc7fa4ba46b60e9f17d97332ef
https://github.com/bitcoin/bitcoin/commit/b6e03cc59208305681745ad06f2056ffe6690597
https://github.com/bitcoin/bitcoin/commit/da918ac06e0d064e9584959ab3d241d03500e972
https://github.com/bitcoin/bitcoin/blob/0.16/src/script/interpreter.cpp#L107
https://github.com/bitcoin/bitcoin/commit/9df9cf5a9f5f56261b0b226dec6249f9dfbefed6


 

 
IsDERSignature was renamed to IsValidSignatureEncoding (​80ad13​) as part of ​BIP 66 (Strict DER 
signatures)​. 

Low S 

Given an ECDSA signature (r, s), the signature (r, -s) is also valid because the underlying curve is 
symmetric. 
 
An initial proposal was to enforce that s is even. Pieter Wuille implemented the low S check in 
February 2014 (​6fd7ef​) and Gregory Maxwell enabled the check in October 2015 (​b196b6​) and the 
following commit message: “[...]If widely deployed this change would eliminate the last 
remaining known vector for nuisance malleability on boring SIGHASH_ALL p2pkh 
transactions.” 
 
The low S check was proposed in ​BIP 146 (Dealing with signature encoding malleability)​. 

Conclusion 

● The majority of items mentioned in BIP 62 were implemented before the proposal was 
withdrawn. The remaining items don’t apply from the perspective of an external node 
and typical transactions. 

● We were initially confused by the fact that nodes use different rules to relay new 
transactions vs to validate transactions in the blockchain. 

● We were able to mutate transactions on the testnet. None of the published malleability 
vectors work on mainnet. 

● “Unexpected” transactions put wallet software in inconsistent states. User’s funds are 
locked until they manually fix the wallet. 

● At this point in time, we believe the main risks around transaction malleability are: 
○ Someone discovering a new vector. The most likely place to look for this would 

be an implementation gap in the existing checks or a new issue similar to Low S. 
○ A miner behaving poorly. Given the high difficulty to mine blocks this is not a 

big concern. 

Links 

● Chechik D., Hayak B. 
Bitcoin Transaction Malleability Theory In Practice (BlackHat 2014) 

● Decker C., Wattenhofer R. (2014) 
Bitcoin Transaction Malleability and MtGox 

● Andrychowicz M., Dziembowski S., Malinowski D., Mazurek Ł. (2015) 
On the Malleability of Bitcoin Transactions  

● Bitcoin Forum​ and ​Bitcoin dev mailing list 

https://github.com/bitcoin/bitcoin/commit/80ad135a5e54e8a065fee5ef36e57034679111ab
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://github.com/bitcoin/bitcoin/commit/6fd7ef2bbf1f941c8dee302ffdeb44e603148723
https://github.com/bitcoin/bitcoin/commit/b196b685c9089b74fd4ff3d9a28ea847ab36179b
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://www.blackhat.com/docs/us-14/materials/us-14-Chechik-Bitcoin-Transaction-Malleability-Theory-In-Practice.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Chechik-Bitcoin-Transaction-Malleability-Theory-In-Practice.pdf
https://arxiv.org/pdf/1403.6676.pdf
http://fc15.ifca.ai/preproceedings/bitcoin/paper_9.pdf
https://bitcointalk.org/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/

